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A Geometric Approach to Obtain
the Closed-Form Forward
Kinematics of H4 Parallel Robot
To obtain the closed-form forward kinematics of parallel robots, researchers use
algebra-based method to transform and simplify the constraint equations. However, this
method requires a complicated derivation that leads to high-order univariate variable
equations. In fact, some particular mechanisms, such as Delta, or H4 possess many invar-
iant geometric properties during movement. This suggests that one might be able to trans-
form and reduce the problem using geometric approaches. Therefore, a simpler and more
efficient solution might be found. Based on this idea, we developed a new geometric
approach called geometric forward kinematics (GFK) to obtain the closed-form solutions
of H4 forward kinematics in this paper. The result shows that the forward kinematics of
H4 yields an eighth degree univariate polynomial, compared with earlier reported 16th
degree. Thanks to its clear physical meaning, an intensive discussion about the solutions
is presented. Results indicate that a general H4 robot can have up to eight nonrepeated
real solutions for its forward kinematics. For a specific configuration of H4, the non-
repeated number of real roots could be restricted to only two, four, or six. Two traveling
plate configurations are discussed in this paper as two typical categories of H4. A numer-
ical analysis was also performed for this new method. [DOI: 10.1115/1.4040703]

1 Introduction

For the study of parallel robots, one of the fundamental prob-
lems is to compute the forward and inverse kinematics. However,
compared to serial robots, the forward kinematics of parallel
robots is a challenging problem due to the difficulties of deriving
closed-form solutions.

To address these challenges, researchers have proposed various
methods that can be generally classified into three types: (1)
numerical convergence methods, (2) algebra-based methods, and
(3) geometry-based methods. The classical numerical method uses
Newton iteration scheme [1] or its variants to solve the constraint
equations although other methods [2] were also considered. This
method is the most popular approach due to its simplified pro-
graming and lower computational time. Usually, researchers using
this approach are more concerned with the computational effi-
ciency. Therefore, they prefer to develop specific algorithms for
specific mechanisms in order to optimize the performance. For
instance, a new approach for Gough–Stewart platform is based on
multibody formulation [3] and a fast computation algorithm for
cable-driven parallel mechanisms [4]. Another emerging method
for numerical computation is interval analysis which was intro-
duced by Merlet [5].

The algebra-based method utilizes an algebraic means to solve
the constraint equations. The basic idea of this method involves
transforming the constraint equations to linear forms by introduc-
ing intermediate variables. This method is used by most

researchers to obtain analytical forward kinematics solutions like
in the Gough–Stewart platform [6–9] and a class of four degree-
of-freedom (DOF) parallel mechanisms [10].

Geometry-based method is an alternative means to derive the
closed-form forward kinematics solutions. The basic idea of this
method is to use the geometric properties of the specific mecha-
nisms to transform and reduce the problem, and then use the ana-
lytical geometric means to finally obtain the solutions. A typical
example is the forward kinematics solution of DELTA [11]. By
translating the forearms to the center of the traveling plate, the
forward kinematics can be reduced to a simpler geometric prob-
lem, which involves finding the center from three known points
on a sphere. Other successful applications of the geometric
approach include a casing oscillator [12] and a special Stewart
platform [13].

Compared with algebraic method, geometric methods have
several drawbacks. First, they are all heavily dependent on the
properties of the specific mechanism, like the pure translation of
the DELTA. Second, because of the first point, they usually can-
not be adopted for other mechanisms. However, they also have
some irreplaceable advantages, including easy derivations and the
clear physical meanings of the variables during derivation. These
advantages simplify the postprocessing of the solution (i.e., choos-
ing the valid root of the final equation), thus decreasing the overall
computation time.

It is worth noting that modern research on mechanisms tends to
use modern mathematical tools due to their insightful descriptions
of rigid body motion, such as the approaches based on screw
theory [14], Lie groups [15], or dual quaternions [16]. These
approaches represent new methods to establish the equations.
However, solving these equations in practice relies on either
numerical methods or algebraic manipulation. Therefore, these
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approaches can still be categorized as numerical or algebraic
approaches.

Compared with the common 6DOF and 3DOF parallel robots,
H4 [17] is a new class of 4DOF parallel robots developed by
Pierrot in 2001. Due to its additional rotational DOF introduced
by the articulated traveling plate, H4 has a much more difficult
forward kinematics compared with the Delta robot, especially for
the closed form solution. To date, the most widely used approach
to address this problem is based on numerical iteration [17]. How-
ever, since this method is developed under practical considera-
tions and the iterative formula is not in closed form, the numerical
approach is not suitable for handling further mechanism analysis.
In addition, a closed form solution is usually preferable due to the
guaranteed maximum computation time and the lack of local max-
imum. Therefore, Choi et al. formulated a closed form solution
based on algebraic manipulations of the constraint equations [18].
Their work shows that the H4 forward kinematics yields a 16th
degree univariate polynomial. However, due to the complexity
and lack of physical meaning of the algebraic approach, they did
not discuss the real roots of the polynomial, as stated by the H4
inventors Pierrot et al. [19] that no further research has been car-
ried out regarding the forward kinematic problem (FKP), such as
the number of real roots of the polynomial. This motivates our
work to develop a new FKP solution with geometrically interpret-
able variables as well as in closed form so that it can be used to
further analyze the H4 mechanism.

In this paper, we propose a geometric approach to solve the for-
ward kinematic problem of H4 mechanism, which treats the two
chains that are connected to the same lateral bar as one group.
Therefore, the translation step can be proceeded inside the groups
separately without being affected by the rotational DOF. After
this reduction, the original problem becomes a simplified geomet-
ric problem, which can be handled easily by analytical geometry.
Due to this geometric approach employed, this method is referred
to as for the geometric forward kinematics (GFK).

The scope of this paper is to present a new method to obtain the
closed-form forward kinematics solutions of 4DOF H4 parallel
robots. After brief description of the H4 concept, a geometric
model is established. Then, the specific steps to transform and
reduce this geometric model are presented. Since different travel-
ing plate structures affect the formulation of the forward kinemat-
ics, the articulated case and the prismatic case are discussed
separately. Following these, the main work focuses on the analyti-
cal geometric derivation. In addition, the root analysis and the
numerical robustness of the GFK are discussed at the end of this
paper.

It is worth to note that, in this paper, H4 represents one class of
4DOF parallel robots, while Par4 [19], I4 [20], I4R [21], and
Heli4 [22] are the four practical implementations of the general
H4 concept appeared in the literature. There are other configura-
tions for the H4 mechanism, for instance, the asymmetric designs
that appeared in Ref. [23] and those using prismatic actuators
[17]. Based on the geometric derivations of this paper, all the H4
robots with articulated traveling plate structures have the same
FKP solutions. Similarly, all H4 robots with prismatic traveling
plate structures have the same FKP solutions. Therefore, for a spe-
cific H4 robot, the forward kinematic problem can be solved by
applying one of the two cases developed in this paper based on its
corresponding traveling plate structure. However, Heli4 is an
exception to this categorization, which utilizes a helical traveling
plate structure. Since its inventors have already applied the
geometric approach [22] to obtain the forward kinematics, this
case is not discussed in this paper.

2 Derivation of the Geometric Forward Kinematics

As shown in Fig. 1, a typical H4 parallel mechanism consists of
four P/R-U-U chains and two revolute joints. The four chains can
be treated as two groups because they are connected to two differ-
ent lateral bars. The two chains together with the connected lateral

bar constitute a relatively independent submechanism. This sub-
mechanism is able to conduct three translational DOFs. Then, the
two submechanisms are connected to a central bar by two revolute
joints. The central bar is the so-called traveling plate. Figure 2
shows more details of a practical H4 kinematic configuration.

Among all the good kinematics properties of H4, two insightful
observations are important to our geometric transformation and
reduction process listed as follows: (1) the lateral bar connected
by two P/R-U-U chains can only translate and (2) the central bar
constrains the two lateral bars in the same plane.

The H4 concept can be implemented in several configurations
in practice, such as Par4 and I4. Par4 is a symmetric H4 with four
identical (S-S)2 chains (or (U-S)2 chains to avoid the internal
DOF for each rod) and four symmetrically arranged actuators. To
avoid internal singularity [24], the traveling plate of Par4 is
designed to form a planar parallelogram, as shown in Fig. 3.
Figure 2 shows another practical configuration of H4, where the
U-U connection is replaced by a restricted (S-S)2 pair (the twist
DOF of the (S-S)2 pair is restricted by two internal planar bars).
This forces the restricted (S-S)2 pair to behave like a planar paral-
lelogram, which ensures the pure translation of the lateral bars.
Note that the H4 robot in Fig. 2 is designed to illustrate the for-
ward kinematics for the articulated traveling plate case. The inter-
nal singularity, stiffness, and other kinematic related issues are

Fig. 1 A typical H4 configuration: the first two P/R-U-U chains
connect to the first lateral bar. The third and fourth chain con-
nects to the second lateral bar. The two lateral bars are con-
nected to the central bar by two revolute joints.

Fig. 2 One practical H4 kinematics configuration. In this con-
figuration, the U-U chain is replaced by a restricted (S-S)2 mech-
anism and the four chains are designed to have identical
properties.
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not considered here. I4 is another well-known H4 robot whose
articulated traveling plate is replaced by a prismatic structure, as
shown in Fig. 3.

2.1 Geometric Transformation and Reduction. The for-
ward kinematics procedure for a parallel mechanism involves the
computation of the position and orientation of the traveling plate,
given the independent joint angles. However, since H4 has many
different kinematic configurations and our goal is to cover all the
situations, we do not derive our formulas directly from the joint
angles. Instead, we assume that the elbow positions are given.
This is a reasonable assumption because it is simple to compute
the elbow positions from the joint angles. Based on this setting,
the forward kinematics of the H4 can be described as a geometric
problem.

Problem: As shown in Fig. 4, four known points are described:
B1, B2, B3, and B4, which represent the known elbow positions.
The distances from these four points to the corresponding lateral
bar vertices C1, C2, C3, and C4 are known. The vectors C1C2 and
C4C3 are known. The traveling plate structure is known. Find the
position of the central bar.

From the given conditions, the vector C1C2 is constant, which
means that the lateral bars cannot change their directions during
movement. This observation allows us to translate the four sides
BiCi along C1C2 without changing the position of the central bar.
Therefore, side B1C1 is moved from C1 to D1, and side B2C2 is
moved from C2 to D1. Likewise, B3C3 is moved from C3 to D2

and B4C4 is moved from C4 to D2. D1 and D2 are the centers of
the lateral bars. This step is shown in Fig. 5. After this simplifica-
tion, the points Ci and the vector C1C2 are eliminated. Their infor-
mation is combined into the new points B01; B02; B03, and B04. Thus,
the original problem becomes:

Problem: There are four known points: B01; B02; B03; and B04. The
distances from these four points to the corresponding lateral bar
centers D1 and D2 are known. The constraint between D1 and D2

is known. Find the position of the central bar.
It can be easily found that the set of D1 and D2 is two circles

whose centers and radiuses can be obtained by computing the tri-
angles �B01B02D1 and �B03B04D2. Therefore, the second step is to
utilize the constraint between D1 and D2 to connect these two
circles, and finally, solve the problem. For this step, as different
H4 versions have different constraints between D1 and D2, there
are two situations that need to be discussed.

2.2 Forward Kinematics of the Articulated Traveling
Plate. An articulated traveling plate uses revolute joints to con-
nect the lateral bars and the central bar. Therefore, the constraints
between D1 and D2 are as follows: (a) D1D2 stays in the horizontal
plane, i.e., D1D2 � ½0 0 1�T ¼ 0; and (b) jjD1D2jj ¼ e, where e is
the length of the central bar.

Adding these two conditions to the reduced problem above and
using the analytical geometry method, one set of constraint equa-
tions can be obtained. By handling these equations, the closed-
form solutions can be obtained. To make this specific derivation
clear, we divide it into the following two main steps:

Step 1: Obtain the constraint equations
Referring to Figs. 5 and 6, from the four spatial points Bi

(i¼ 1,2,3,4 is the index of each chain) and lateral bar vector
u ¼ ½ux uy uz�T ¼ C1C2, we can get the four new elbow position
vectors OB0i

OB0i ¼ OB0i þ ciu (1)

where ci is the ith entry of the coefficient matrix

c ¼ ½0:5� 0:5� 0:5 0:5�. And the position vector OOj ¼
½ox;j oy;j oz;j�T of the center Oj, the normal vector

nj ¼ ½nx;j ny;j nz;j�T, and the radius rj of circle Cirj (j¼ 1, 2 is the
index of the two parametrized circles) are given by

OOj ¼ ðOB02j�1 þOB02jÞ=2

n1 ¼ OB02 �OB01
n2 ¼ OB03 �OB04

rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � nT

j nj=4
q

(2)

Fig. 4 Geometric model of the H4 forward kinematics

Fig. 5 Simplification of the original geometric problem: since
the lateral bars keep their direction during movement, each side
BiCi is translated from Ci to the corresponding lateral bar center

Fig. 3 Two typical traveling plate structures of the H4 robots.
Left belongs to Par4 and the right belongs to I4.
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where c is the length of the forearm. Therefore, the parametric
equation of Cirj can be obtained as follows:

p1 ¼ K1 � ½ cos a sin a 1 �T (3)

p2 ¼ K2 � ½ cos b sin b 1 �T (4)

where pj ¼ ½xj yj zj�T is the position vector of an arbitrary point
on Cirj, and a and b are the parameterized variables for Cir1

and Cir2, respectively. The coefficient matrices K1 and K2 are
given by

Kj ¼
rj cos cj 0 ox;j

rj sin hj sin cj rj cos hj oy;j

�rj cos hj sin cj rj sin hj oz;j

2
664

3
775

where

sin cj ¼ nx;j=jjnjjj

cos cj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nT

j nj � n2
x;j

q .
jjnjjj

sin hj ¼ �ny;j

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nT

j nj � n2
x;j

q

cos hj ¼ nx;j

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nT

j nj � n2
x;j

q

Finally, by setting z1¼ z2 and jjD1D2jj ¼ e, we establish the
constraint equations

k31;1 cos aþ k32;1 sin aþ k33;1

¼ k31;2 cos bþ k32;2 sin bþ k33;2 (5)

ðx1 � x2Þ2 þ ðy1 � y2Þ2 ¼ e2 (6)

8<
:

where kpq;j is the entry of matrix Kj in the pth row and the qth col-
umn. Note that there are only two unknown variables in Eqs. (5)
and (6), which are much simpler to solve for than the algebra-
based method.

Step 2: Solve the constraint equations
At first, we use the substitution method to simplify Eq. (5). Let

sin ta ¼ k31;1=s1 cos ta ¼ k32;1=s1

sin tb ¼ k31;2=s2 cos tb ¼ k32;2=s2

where

sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

31;j þ k2
32;j

q

Then, Eq. (5) can be transformed into

s1 sinðaþ taÞ þ k33;1 ¼ s2 sinðbþ tbÞ þ k33;2 (7)

By denoting

a0 ¼ aþ ta p11 ¼ s1=s2

b0 ¼ bþ tb p12 ¼ ðk33;1 � k33;2Þ=s2

Equation (7) can be written as

p11 sin a0 þ p12 ¼ sin b0 (8)

As for Eq. (6), substitute corresponding xi and yi from Eqs. (3)
and (4) into Eq. (6) and use a0 and b0 as the new unknowns (use
the relations a ¼ a0 � ta and b ¼ b0 � tb). This yields

ðp21 cos a0 þ p22 sin a0 þ p23 cos b0 þ p24Þ2

þðp25 cos a0 þ p26 sin a0 þ p27 cos b0 þ p28Þ2 ¼ e2 (9)

where its coefficients can be precomputed as follows:

p21 ¼ k11;1 cos ta � k12;1 sin ta

p22 ¼ k11;1 sin ta þ k12;1 cos ta � ðk11;2 sin tb þ k12;2 cos tbÞp11

p23 ¼ �k11;2 cos tb þ k12;2 sin tb

p24 ¼ k13;1 � k13;2 � ðk11;2 sin tb þ k12;2 cos tbÞp12

p25 ¼ k21;1 cos ta � k22;1 sin ta

p26 ¼ k21;1 sin ta þ k22;1 cos ta � ðk21;2 sin tb þ k22;2 cos tbÞp11

p27 ¼ �k21;2 cos tb þ k22;2 sin tb

p28 ¼ k23;1 � k23;2 � ðk21;2 sin tb þ k22;2 cos tbÞp12

Then, use the identity cos b02 þ sin b02 ¼ 1 to solve for cos b0

from Eq. (8) and substitute cos b0 into Eq. (9). This results in a
trigonometric equation which contains only one variable a0

½e2 � Q2
1 � Q2

2 � ðp2
23 þ p2

27ÞQ3�2 � 4Q3ðQ1p23 þ Q2p27Þ2 ¼ 0

(10)

in which

Q1 ¼ p21 cos a0 þ p22 sin a0 þ p24

Q2 ¼ p25 cos a0 þ p26 sin a0 þ p28

Q3 ¼ �p2
11 sin2a0 � 2p11p12 sin a0 � p2

12 þ 1

The next step involves expanding Eq. (10), collecting cos a0 terms,
and taking the squared-root of the resultant expression. The rela-
tion cos2a0 ¼ 1� sin2a0 can be substituted to obtain an equation
that contains only sin a0. If sin a0 is regarded as one variable,
Eq. (10) can be called a univariate polynomial equation. More-
over, since the geometric meaning of Eq. (7) is the constraint
z1¼ z2¼ z, we can also use z to substitute sin a0. This gives the fol-
lowing relationship:

sin a0 ¼ ðz� k33;1Þ=s1 (11)

Fig. 6 For the case of an articulated traveling plate, the con-
straints between D1 and D2 are jjD1D2jj5 e and D1D2 � ½0 0 1�T 5 0.
The circles with centers O1 and O2 are the possible positions for
D1 and D2, respectively, before adding D1D2 constraints.
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By using this relationship, Eq. (10) can be transformed into a uni-
variate polynomial equation as a function of z

h8z8 þ h7z7 þ h6z6 þ h5z5 þ h4z4 þ h3z3 þ h2z2 þ h1zþ h0 ¼ 0

(12)

In general, for univariate polynomial equations above fourth
degree, there are no analytical solutions. But they can be easily
solved by numerical iteration.

2.3 Forward Kinematics for the Prismatic Traveling Plate.
As shown in Fig. 3, a prismatic traveling plate structure replaces
the revolute joints with prismatic joints. Therefore, the constraints
between D1 and D2 become the following: (a) D1D2 remains in
the horizontal plane and (b) the distance between C1C2 and C3C4

is equal to f.
Because of the properties of these two constraints, further geo-

metric simplification can be made. That is, move Cir1 to Cir01
along vector D1D0 where D0 is the projection of D1 on C3C4. As
shown in Fig. 7, jjD1D0jj ¼ f . This simplification transforms the
original two constraints into one: D0D2 is parallel to C3C4, i.e.,
D0D2 ¼ kC3C4, for a coefficient k.

By using the facts jjD1D0jj ¼ f and D1D0 � C3C4 ¼ 0 and
C3C4 ¼ �u; D1D0 ¼ ½xd yd 0�T can be obtained as

D1D0 ¼ f
u�OZ

jju�OZjj

Therefore, the parametric equation of Cir01 is given by

p01 ¼ p1 þ D1D0 (13)

where p01 ¼ ½x01 y01 z01�
T

is the corresponding point of p1 on Cir01.
Since Cir2 did not move, its parametrized equation maintains (4).
Thus, the final constraint equation set for the prismatic traveling
plate case is

ðx2 � x01Þ=ux ¼ ðy2 � y01Þ=uy

z2 ¼ z01

�
(14)

By substituting the corresponding variables from Eqs. (4) and (13)
into Eq. (14), we obtain

k11;3 cos bþ k21;3 sin bþ k31;3

¼ k12;3 cos aþ k22;3 sin aþ k32;3 (15)

k31;1 cos aþ k32;1 sin aþ k33;1

¼ k31;2 cos bþ k32;2 sin bþ k33;2 (16)

8>>>><
>>>>:

where kpq;3 is the entry located at the pth row and the qth column
in a new coefficient matrix K3.

K3 ¼
uyk11;2 � uxk21;2 uyk11;1 � uxk21;1

uyk12;2 � uxk22;2 uyk12;1 � uxk22;1

uyk13;2 � uxk23;2 uyðk13;1 þ xdÞ � uxðk23;1 þ ydÞ

2
64

3
75

Using the same substitution method as in Eq. (7), Eq. (15) can be
simplified to

p31 cos b0 þ p32 sin b0 ¼ p33 cos a0 þ p34 sin a0 þ p35 (17)

where

p31 ¼ k11;3 cos tb � k21;3 sin tb

p32 ¼ k11;3 sin tb þ k21;3 cos tb

p33 ¼ k12;3 cos ta � k22;3 sin ta

p34 ¼ k12;3 sin ta þ k22;3 cos ta

p35 ¼ k32;3 � k31;3

Note that Eq. (16) is the same as Eq. (5). Thus, we can use rela-
tionship (8) directly to substitute b0 in Eq. (17). This yields a trigo-
nometric equation which contains only one variable a0

p2
31½1� ðp11 sin a0 þ p12Þ2�
¼ ½p33 cos a0 þ ðp34 � p32p11Þsin a0 þ p35 � p12p32�2 (18)

The same strategy as in Sec. 2.2 can be used to obtain a univariate
polynomial equation with unknown z

t4z4 þ t3z3 þ t2z2 þ t1zþ t0 ¼ 0 (19)

The roots of this quartic equation can be computed using the
quartic root formulas [25], although numerical solutions may be
more convenient.

3 Discussion About the Real Roots

As shown earlier, the forward kinematic equations for H4
robots with articulated traveling plate can be transformed into an
eighth degree univariate polynomial equation, while H4 robots
with prismatic traveling plate have a fourth degree univariate
polynomial equation. Algebraically, an eighth degree real coeffi-
cient univariate polynomial has exactly eight roots in the complex
domain and all complex roots must appear in conjugacy. This
means the number of complex roots cannot be odd. However, due
to the multiplicity, the actual nonrepeated real roots could still be
odd numbers (for instance, two repeated real roots are actually
one nonrepeated root). So in theory, there could exist up to eight
real roots for the general H4 mechanism. This becomes clear if we
consider the physical meaning of Eq. (12). This equation can be
obtained by constraining the length and direction of D1D2. This
means that each nonrepeated real root of Eq. (12) corresponds to
one distinct D1D2. Therefore, we can find the number of real roots
by looking at the number of distinct D1D2 between Cir1 and Cir2.
Vice versa, we can investigate the possible configurations of H4

Fig. 7 For the case of a prismatic traveling plate, the con-
straint jjD1D 0jj5 f (D0 is the projection of D1 on C3C4) allows us
to make a further simplification that involves the translation of
Cir1 from D1 to D 0
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by looking at the nonrepeated real roots. Figure 8 shows the exis-
tence of nonrepeated real root number.

Note that Fig. 8 only shows the existence of nonrepeated num-
ber of real roots for the general H4 mechanism. For a specific H4
robot, the number of real roots depends on the actual positions of
Cir1 and Cir2 which turns out to be very hard to analyze in
advance. However, we can still investigate this by numerically
checking a regular 4DOF grid in the workspace. Section 3.1 is an
example of the H4 robot in Fig. 2. This model is used to investi-
gate the root number. A specific point is also chosen (who has
four real roots) in joint space to show the corresponding configu-
rations for each real root.

3.1 The Nonrepeated Real Root of the H4 Robot With an
Articulated Traveling Plate. Figure 9 shows the design parame-
ters of a H4 robot with articulated traveling plate and the global
coordinate system (O, X, Y, Z). This figure intends to capture the
kinematic configurations in Fig. 2. The used design parameters in
this paper are base radius a¼ 400 mm, arm length b¼ 300 mm,

forearm length c¼ 1000 mm, lateral bar length d¼ 100 mm, and
central bar length e¼ 100 mm.

To count the real roots in the workspace, we need to calculate
the workspace first. This can be done by checking a 4DOF grid
½�1000; 1000� � ½�1000; 1000� � ½200; 1000� � ½�p=4; 3p=4� by
the inverse kinematics (the inverse kinematics algorithm for H4
can be found in Ref. [23]). The workspace of the H4 robot in
Fig. 2 is shown in Fig. 10. During this process, all joint angles
whose corresponding point is in the workspace were recorded.
These joint angles were then used to compute the GFK and count
the number of real roots.

Figure 11 shows the spatial distribution of different real roots.
It is worth to note that zero real roots are not needed since only
the joint angles from the inverse kinematics are chosen. There-
fore, there is at least one real root for all points. In addition, one,
three, five, seven, or eight nonrepeated real roots were not found
either. This may be attributed to the fact that our grid was not suf-
ficiently fine. But a more important reason is that these root cases
only appear in specific mechanisms with very special kinematic
configurations (referring to Fig. 8).

However, we did find several points with six nonrepeated real
roots, as shown in Fig. 11(c). These points appear in symmetry.
Another interesting observation is the distributions of the two real

Fig. 8 The existence of nonrepeated real root number is illus-
trated by intentionally letting Cir1 and Cir2 be in the same plane,
which is not very hard to find in practice. In these figures, the
line segments connecting two circles are the compatible D1D2s
with Eq. (12). The unillustrated five root case and seven root
case can be achieved from the six root case by slightly enlarg-
ing or shrinking Cir2 so that the mid root on the right side disap-
pears or splits into two. A number and an alphabetical letter are
used to label a specific root configuration: (a) As Cir2 moves
left, the real root emerges from null to three, (b) six real roots
case, (c) if we keep moving Cir2 left from the three roots case,
the mid root bifurcates and generates the four real roots case.
This figure also shows different D1D2s and their corresponding
z coordinate, and (d) eight real roots case.

Fig. 9 The design parameters of a H4 robot with articulated
traveling plate (the right figure shows the top view with the
parameters of the traveling plate)

Fig. 10 Workspace of the H4 robot in Fig. 2: position plot of
the central bar: (a) three-dimensional view of the workspace of
the H4 robot in Fig. 2 and (b) section view of the workspace of
the H4 robot in Fig. 2 (section plane x 5 0)

051013-6 / Vol. 10, OCTOBER 2018 Transactions of the ASME

Downloaded From: http://mechanismsrobotics.asmedigitalcollection.asme.org/ on 07/18/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



roots case and the four real roots case. From Fig. 11(f), these two
cases constitute most of the workspace but they are not clearly
separated by a boundary. Instead, there exists some overlapping
areas. This observation implies that there exist some continuous

regions (this simply connected manifold in mathematics is called
component) in the workspace that any point in these regions has
only two nonrepeated real roots (or four for other components).
Since nonrepeated real root means the valid geometric configura-
tions of the robot, this statement is equivalent to say that there
exist some continuous regions in the workspace such that the
robot has only two (or four for other components) possible geo-
metric configurations. Further investigations show that for the H4
robot in Fig. 2, the two configurations in the two root component
are the two cases shown in Figs. 12(a) and 12(c).

3.2 Four Configurations for a Specific Point of the H4
Robot. Given q ¼ ½p=6 p=7 p=8 p=9�T, the univariate polyno-
mial equation of z becomes

�3:366� 10�5z8 � 4:503� 10�3z7 � 4:073� 104z6

þ4:884� 106z5 � 1:276� 1013z4 þ 6:379� 1015z3

þ1:390� 1019z2 � 3:666� 1021z� 4:195� 1024 ¼ 0

Its eight roots are

½ 2231þ 24880i; 2231� 24880i;�2547þ 24560i;

�2547� 24560i; 919:7; 863:3;�673:2;�612:4 �

As these roots are the possible z coordinates of the traveling plate,
only the four real ones are valid in geometry. Among these four
real roots, the negative two represent the cases that the traveling
plate is above the base and the positive two represent below the
base, as shown in Fig. 12. The difference between the two positive
roots lies in the opposite directions of D1D2. That is because the
direction of D1D2 in Eqs. (5) and (6) was not constrained.

Fig. 11 Distribution of points with different nonrepeated real roots and their enveloping solid: (a) distribution of points with
two nonrepeated real roots, (b) distribution of points with four nonrepeated real roots, (c) distribution of points with six non-
repeated real roots, (d) section view (section plane y 5 2x) of the enveloping solid of (a). Note that this section view shows a
hollow inside (a), (e) enveloping solid of (b), and (f) joint view for (d) and (e). The enveloping solid in (d) was changed to trans-
parent green in order to get a better view.

Fig. 12 Configurations of the four real roots. Note that the
inside planar bar near the traveling plate in the parallelogram
was set transparent to get a clear view of each configuration.
The traveling plate in subfigures (b) and (d) has a similar con-
figuration as in (a) and (c): (a) z 5 919.7 mm, (b) z 5 2673.2 mm,
(c) z 5 863.3 mm, and (d) z 5 2612.4 mm.
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Obviously, the right direction of D1D2 should ensure that the fore-
arms do not collide. In practice, this can be done by specifying the
range of the rotation angle of the central bar.

In general, a good procedure to pick the correct solution of the
GFK is restricting all the possible solutions in the workspace at
first (the workspace can be obtained by inverse kinematics before-
hand). Then for those incorrect solutions in the workspace, the
rotation angle limit of the central bar (for instance, from �45 deg
to 135 deg) can be used to eliminate them.

3.3 Numerical Robustness of the Geometric Forward
Kinematics and Failure Analysis. For parallel robots, a practical
problem of kinematic analysis is the robustness of the algorithm.
The computation may fail near the singularities. Therefore, in this
section, we performed a numerical check to see if the GFK algo-
rithm works for every point in the workspace. This is done in two
main steps. First, the GFK is checked for at least one real root for
all workspace points and whether it is capable of picking the right
solution when there are more than one real roots. The second step
involves comparing the workspace points with the points com-
puted by GFK. The error between these two points indicates the
numerical accuracy of our algorithm. Note that this error also con-
tains the inverse kinematics error since we used the inverse kine-
matics to map the workspace point to the joint space point before
applying GFK. However, for parallel mechanisms, the inverse
kinematics can be assumed accurately and reliably due to its sim-
plicity. So, this error is still reflected in the GFK’s precision. We
use MathWorks MATLAB (the default computation precision is 16
digits numbers) to perform the computation and use the same grid
as in Sec. 3.1.

From Sec. 3.1, no point with zero real root was found in the
workspace. Thus, for the first part, we only need to check if the
GFK algorithm can pick the correct solution. This actually can be
done by the second part if we consider a big error as a wrong
pick.

The numerical experiment shows that the proposed algorithm is
capable of computing all the available solutions. However, we did
detect some failure points (4134 failure points out of 344,220
points) for which the program could not pick the right solution.
Further investigation shows that this failure is caused by the
selection subroutine. Since we only restricted the range of /
angle, the selection subroutine is not able to eliminate the plausi-
ble solutions who also satisfy this condition. For instance, when

q ¼ ½�1:329� 0:324 0:749� 0:0183�Trad, Eq. (12) has two very
close positive real roots z1¼ 688.9 and z2¼ 686.8. The two
corresponding solutions in the workspace are X1 ¼ ½20:41 mm

�265:3 mm 688:9 mm� 0:5236 rad�T and X2 ¼ ½18:06 mm

�260:5 mm 686:8 mm� 0:6662 rad�T.
It is observable that both these close solutions satisfy the con-

straint equation as well as the restriction of D1D2 rotational angle.
In fact, these two positions are two valid solutions for the real
robot. Therefore, for these points, restricting the rotational angle
of the central bar or restricting operation range of other moving
parts cannot eliminate the plausible solution. The only way to
eliminate them is to consider the current position of the robot
since a physical object cannot change its position discontinuously.
The right position of this object after a small amount of time
should be close to its current position. Moreover, since we stated
in Sec. 3 that every distinct real root corresponds to a distinct
D1D2, the two close solutions actually correspond to a specific
configuration of Cir1 and Cir2 such that the two distinct D1D2 are
close to each other. This happens when the two circles Cir1 and
Cir2 move close to each other so that the two solutions merge into
one solution (as shown in Fig. 8(a)).

For those successfully picked points, the maximum error norm
is 9.8775� 10�5 (due to the angle component for the workspace
points, this norm does not have a physical unit) and the mean error
norm is 4.5779� 10�9. This shows that our algorithm exhibits
good accuracy.

Note that we used a larger / range (180 deg, compared with
the practically used range 90 deg) to fully explore the root proper-
ties. If we restrict the / range to 90 deg, it turns out that there is
only one valid solution inside the workspace, which is consistent
with the result in Ref. [19].

4 Conclusion

In this paper, a new geometry-based method to obtain the
closed-form forward kinematics solution of 4DOF H4 parallel
robots is developed. The result shows that the forward kinematics
of the H4 robots with articulated traveling plate yields an eighth
degree univariate polynomial equation, as well as the prismatic
traveling plate case yields a simpler fourth degree univariate poly-
nomial equation. For both situations, this method has a more sim-
plified derivation and clearer physical meanings than the earlier
reported results. Thanks to its clear physical meaning, an intensive
discussion about the solutions was possible. The investigations
show that a general H4 robot can have up to eight nonrepeated
real solutions for its forward kinematics. For a specific configura-
tion of H4, the nonrepeated real root number could be only two,
four, or six. The numerical analysis shows that GFK can success-
fully find all the solutions with good accuracy although there exist
some failure points that require more historical information to
avoid.

Nomenclature

a ¼ radius of the robot base (distance between
O and Ai)

Ai ¼ position of the actuation joint of chain i
b ¼ arm length (distance between Ai and Bi)

Bi ¼ elbow point of chain i
B0i ¼ new position of Bi after translation
Ci ¼ endpoint of the lateral bar on chain i
c ¼ forearm length (distance between Bi and

Ci)
Cirj ¼ the parametrized circle centering at Oj with

a radius of rj and a normal vector nj

d ¼ lateral bar length (distance between C1 and
C2)

D1 ¼ midpoint of the lateral bar C1C2

D2 ¼ midpoint of the lateral bar C4C3

e ¼ central bar length (distance between D1

and D2)
E ¼ midpoint of the central bar D1D2

f ¼ distance between the two lateral bars for
the prismatic traveling plate

i ¼ index of each chain (i¼ 1,…,4)
j ¼ index of the two parametrized circles

(j¼ 1, 2)
kpq;r ¼ entry of matrix Kr in the pth row and the

qth column
Kj ¼ coefficient matrix for the parametrized

equation of Cirj

K3 ¼ coefficient matrix for the constraint equa-
tion set of the prismatic traveling plate

n1 ¼ vector B01B02 whose three components are
nx;1; ny;1, and nz;1

n2 ¼ vector B04B03 whose three components are
nx;2; ny;2, and nz;2

O1 ¼ midpoint of B01B02 whose three components
are ox;1; oy;1, and oz;1

O2 ¼ midpoint of B03B04 whose three components
are ox;2; oy;2, and oz;2

pj ¼ an arbitrary point on Cirj whose three
components are xj, yj, and zj

q ¼ ½q1; q2; q3; q4�T ¼ actuated joint positions
u ¼ vector C1C2 whose three components are

ux, uy, and uz
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X ¼ ½x; y; z;/�T ¼ task space coordinates (position of point E;
motion angle of the central bar)

a ¼ parameterized variable for Cir1

b ¼ parameterized variable for Cir2
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