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Variable Structure Controller Design for Linear Systems with Bounded Inputs 
 

Shengjian Bai, Pinhas Ben-Tzvi*, Qingkun Zhou, and Xinsheng Huang 

 

Abstract: This paper studies the design of variable structure systems with saturation inputs. Sliding 

mode domain, reaching domain, and unescapable reaching domain of linear systems with variable 

structure are defined and investigated. When the state matrix of the linear system is Hurwitz, the stabil-

ity of the variable structure systems is proven by using passivity theory. Moreover, variable structure 

systems with novel nonlinear switching surfaces are proposed for second order systems. Two strategies 

for designing variable structure control for high order linear systems are also proposed, such as step-

by-step variable structure control and moving-surface variable structure control, which were found to 

guarantee that the reaching condition of the variable structure control is always satisfied. Finally, an il-

lustrative example pertaining to the attitude control of a flexible spacecraft demonstrates the effective-

ness of the proposed methods. 

 

Keywords: Bounded inputs, linear systems, nonlinear switching surface, passivity theory, variable 

structure control. 

 

1. INTRODUCTION 

 

Variable Structure Control (VSC) with sliding mode 

was first proposed in the early 1950’s. Nowadays, VSC 

has developed into a general design method that is being 

examined for a wide spectrum of system types including 

nonlinear systems, MIMO systems, discrete-time models, 

large-scale and infinite-dimensional systems, and 

stochastic systems. The published research provided by 

Utkin [1], DeCarlo [2], Hung [3] and Young [4] has 

presented the fundamental theory and design methods of 

VSC in different aspects. The most distinguished feature 

of VSC is claimed to result in insensitivity to parameter 

variations, and complete rejection of disturbances. This 

much desirable system performance only holds in the 

sliding mode domain (SMD) on the switching surfaces, 

which is easily satisfied under nonsaturating control.  

An important problem encountered in practice is that 

of control input saturation, which originates from 

actuators in system realization. For example, it is of 

particular interest in spacecraft control where the control 

objectives are to be achieved with limited control 

authority [5]. When the control input is bounded, the 

SMD will be restricted to some local domain near zero 

on the switching surface. The motion outside of the SMD 

is so-called ‘bang-bang’ motion, which does not have 

robustness. Thus, restrictions of control input can lead to 

substantial performance deterioration and even to 

instability of the entire system. Stability analysis of 

linear systems with actuators having amplitude saturation 

has been a basic problem in the literature [6]. However, 

studies on VSC from such a point of view are rare [7-9]. 

The work done by Madani-Esfahani et al. [7] 

investigated regions of asymptotic stability of uncertain 

variable structure control systems with bounded 

controllers. The work performed by Okabayashi et al. [8] 

investigated the design of VSC for LTI systems and 

presented a new method of designing nonlinear 

switching surfaces for second order LTI systems. The 

work performed by Han et al. [9] added a nonlinear part 

to the traditional linear sliding surface to ensure that the 

control signal generated by the controller does not 

exceed the bounds of the system input. In this paper, we 

aim to find an effective design methodology for linear 

systems with bounded inputs.  

The main contributions of this paper are summarized 

as follows: (a) the concepts of reaching domain (RD) and 

unescapable reaching domain (URD) are introduced to 

investigate variable structure controller design; (b) 

design of VSC with novel nonlinear switching surfaces is 

proposed for second order LTI systems; (c) step-by-step 

VSC and moving-surface VSC are proposed for VSC 

design of LTI systems, which can guarantee that the 

reaching condition of VSC is always met. 

A class of single-input LTI systems is considered and 

described in Section 2. In Section 3, some definitions are 

provided, including sliding mode, SMD, RD, and URD, 

and then methods are developed for designing switching 

surfaces of linear systems whose state matrices are 

Hurwitz. In Section 4, the design of VSC for second 

order systems is investigated, where design of nonlinear 

switching surfaces is discussed. In Section 5, two design 
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methods of VSC for high order linear systems are 

proposed. In Section 6, the proposed methods are used 

for attitude control of a flexible spacecraft to validate 

their effectiveness. Lastly, a concluding discussion is 

given in Section 7. 

 

2. PROBLEM STATEMENT 

 

The design of VSC for a single-input LTI system is 

considered 

,u= +�x Ax B  (1) 

where the state vector x is n-dimensional, and A and B 

are constant matrices of appropriate dimensions. 

A linear switching surface is selected as 

( ) 0,xσ = =cx  (2) 

where c is n-dimensional vector, cB = 1, and (n-1) poles 

of the equivalent system are stable. 

( ) ,= −I�x Bc x  (3) 

where I is a unity matrix. 

The selection of the following control law 

( ), 0u x Ksign Kσ= − − >cA  (4) 

guarantees that the trajectory of the solution of the 

system described in (1) globally reaches onto (2) within 

finite time and is constrained on it. In this case, the 

closed-loop system is represented as the ‘reaching law’ 

[10] 

( ),Ksignσ σ= −�  (5) 

satisfying the following ‘reaching condition’ 

.0σσ <�  (6) 

If the input of the system (1) is constrained by severe 

saturation, the control law (4) cannot be applied directly. 

However, studies on VSC from such a point of view are 

rare [7,8]. In this paper, we investigate the design of 

VSC for LTI systems with bounded inputs. That is, for 

the single-input LTI system (1) where the input is 

constrained in advance to 

, 0.u K K≤ >  (7) 

The following bounded control law is considered 

( ).u Ksign σ= −  (8) 

 

3. DESIGN OF LINEAR SWITCHING SURFACES 

FOR LINEAR SYSTEMS 

 

In this section, the SMD of VSS with linear switching 

surfaces is investigated. As a preliminary preparation, 

some definitions are provided as follows. 

Definition 1 [3]: If, for any x0 on the switching 

surface σ = 0, we have x(t) on σ = 0 for all t > t0, then x(t) 

is a sliding motion or sliding mode of the system. 

Based on the above definition, the following three 

additional definitions are derived: 

Definition 2: A domain D on the switching surface 

σ = 0 is a sliding mode domain (SMD) if every point on 

it undergoes the sliding motion. 

Definition 3: A domain M in the state space is a 

reaching domain (RD) if the reaching condition (6) is 

satisfied in the domain. 

Definition 4: A domain M in the state-space is an 

unescapable reaching domain (URD) if the motion 

starting from any initial state within M reaches onto 

SMD within a finite time T. 

Remark 1: With the input constraint provided by 

equation (7), the SMD is not necessarily the whole 

switching surface, and it is often restricted to some local 

domain near zero in the state-space. Thus, the SMD is a 

subspace of the switching surface in which the reaching 

condition (6) is satisfied. 

Remark 2: A point inside the URD does not 

necessarily satisfy reaching conditions, that is, the RD is 

a subspace of URD. 

The closed-loop system (1) can be viewed as Lur’e-

type system, i.e., a memory-less nonlinear feedback part 

(8) to the forward LTI system belongs to the sector [0 1). 

If the transfer function of the linear subsystem is so-

called positive real, then it possesses important 

properties which may lead to the generation of a 

Lyapunov function for the whole system.  

The following two lemmas describe a positive linear 

system and its stability. 

Lemma 1 [11]: A minimum realization of the LTI 

system 

1( ) ( )G s s
−

= − +IC AB D  (9) 

is 

,

.

u

y x u

= +

= +

�x Ax B

C D
 (10) 

The above system is strictly passive, if G(s) is strictly 

positive real. 

Lemma 2 [11]: Considering a strictly passive system 

( , ),

( , ),

f u

y h u

=

=

�x x

x

 (11) 

the origin of ( , ) 0f u= =�x x  is globally asymptotically 

stable if a storage function of the system is radially 

unbounded. 

Based on the Lemmas and Definitions presented above, 

global stabilization of the LTI system (1) by the bounded 

control (8) is considered. The following theorems are 

valid: 

Theorem 1: For system (1), if A is Hurwitz and (A, B) 

is controllable, then by choosing the stable switching 

surface 

( ) 0,σ = =x cx  (12) 

where cB = 1 and (c, A) is observable, the SMD becomes 

{ }: 0, ,
SMD

D x K K= = − < <cx cAx  (13) 

and the URD is the whole state-space. 
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Proof: Firstly, concerning definition 2 and the linear 

switching surface (12), we have 

( ) 0 0,

( ) 0 0.

K

K

σ σ

σ σ

= + > <

= + < >

�

�

c Ax B

c Ax B
 (14) 

That is  

.K K− < <cAx  

Therefore, the SMD is as provided in (13). 

Secondly, the fact that the LTI system is a minimum 

realization of the strict positive transfer function (9) [12] 

combined with Lemma 1 indicates that the LTI system is 

strictly passive. A radial unbounded Lyapunov function 

can be chosen as a storage function by using KYP lemma 

as described in [11], and then from Lemma 2 it is 

guaranteed that the closed-loop system is globally 

exponentially stable. So if a sphere N near zero is 

considered such that 

( , ) : { | },n

N x Rγ γ= ∈ ≤x x  (15) 

where 

0 ,
K

γ< <

cA
 (16) 

then the initial state from any point of the state-space 

reaches inside the sphere within a finite time. That is, the 

initial state from any point of the state-space approaches 

onto the SMD  within a finite time.       � 

Therefore, the control approach (8) guarantees that the 

trajectory of the solution starting from any initial state of 

(1) reaches onto the sliding mode domain on the 

switching surface within a finite time and approaches to 

zero thereafter. 

Theorem 2: For system (1), if A is Hurwitz and (A, B) 

is controllable, then by choosing the stable switching 

surface (12) where c is 

1
[ ] ,ρ

−

= −c a PM P  (17) 

and a = (a0, a1,…,an-1) are the coefficients of the 

characteristic polynomial of the system, M and P are 

1
0

,
0 0

n−
 

=  
 

I
M  (18) 

1

1 1

1

,

1

n

n

a

a a

−

−

 
 
 =
 
  
 

�

� � �

�

P  (19) 

respectively, and ρ is the solution of 

1 2

1 2 0
( 1) 0.n n n n

n n
a a aρ ρ ρ

− −

− −

− + − + − =�  

If such c exists, the switching surface (12) is the SMD, 

and the URD is the whole state–space. 

Proof: Firstly, it will be proven that the switching 

surface is SMD. 

Concerning the transform matrix P (19), the control-

lable canonical form of (1) is given by 

.u= +
�x Ax B  (20) 

Then, A B  and c  are represented by  

1

0 1 1

1 T

T

1 1

0 1 0

,
0 0 1

(0 0 1) ,

( 1) .

n

n

a a a

c c

−

−

−

−

 
 
 = =
 
  − − − 

= =

=

�

� � �

�

�

�

�

A P AP

B P B

c

 

The SMD (13) can be transformed as 

( )1 1

1

,

n

i i i

i

K c a x K
− −

=

− < − <∑  (21) 

where 
0

.0=c  

Then, the SMD on the (n-1) dimensional switching 

surface is located between the parallel surfaces 

( )1 1

1

.

n

i i i

i

c a x K
− −

=

− = ±∑  (22) 

To guarantee that the SMD is the whole switching 

surface, the following conditions must be satisfied 

0 1 0 2 2 1 1

1 2 1

.
1

n n n n

n

a c a c a c a

c c c

− − − −

−

− − − −

= = = =�  (23) 

That is, 

( ) ,ρ− =cM a c  (24) 

where ρ is a constant and M is given by (18). 

Then, c can be calculated from (24) 

1
[ ] ,ρ

−

= − Ic a M  (25) 

where ρ is the solution of the following equation [10]. 

1 2

1 2 0
( 1) 0.n n n n

n n
a a aρ ρ ρ

− −

− −

− + − + − =�  

Then the representation of c in (17) can be derived from 

(25) and P 

1 1
[ ] .ρ

− −

= = −c cP a PM P  (26) 

Secondly, to show the fact that any points starting 

from the state–space reaches onto the switching surface 

within finite time, an initial state 
0

x  such that 

0 0 0
, ( ) 0,n

R cσ∈ = >x x x  (27) 

is considered. Then the control law u = −K is obtained 

from (8). Here, if the trajectory of the solution starting 

from x0 approaches to zero without reaching onto the 

switching surface (12), then 

0
( ( )) 0, 0 , (0) ,σ τ τ

∀
> ≤ < +∞ =x x x  (28) 

must be valid. The state equation of the system with the 

control law u = −K is 

1( ).K K
−

= − = −
�x Ax B A x A B  (29) 
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Since A is Hurwitz, the equivalent points of the system 

are 1
,

e
K

−

=x A B  thus 

( ) 1 1

0

0,
e

c K
x c K

a
σ

−

= = − <A B  (30) 

and this contradicts equation (28), which implies that the 

trajectory intersects the switching surface at least once. 

Therefore, the trajectory of the system always reaches 

onto the switching surface (12) within a finite time. The 

same is true for the case in which σ(0) < 0.          � 

Thus, the control approach (8) guarantees that the 

trajectory of the solution starting from any initial state of 

(1) reaches onto the sliding mode domain within a finite 

time and approaches to zero thereafter.  

The following statements hold true concerning the 

above theorems: 

Remark 3: In Theorem 1, the SMD is not the whole 

switching surface and is restricted to some local 

subspace of the switching surface. Therefore, RD is also 

restricted to some local domain near zero in the state-

space. The SMD on the switching surface is maximized 

when c is chosen to minimize .cA  The larger the 

SMD, the larger is the robust region of the system. 

Remark 4: In Theorem 2, the SMD is extended to the 

whole switching surface, that is, the robust region of the 

closed system is maximized, and the RD is {x|−K 

,}K≤ ≤cx  which is a subspace of URD. 

Remark 5: Generally speaking, the URD is not the 

whole state–space when A is not Hurwitz. 

 

4. DESIGN OF VSC FOR SECOND ORDER 

LINEAR SYSTEMS WITH BOUNDED INPUTS 

 

In this section, design of VSC with linear and 

nonlinear switching surfaces for the second order system 

described by (31) is investigated. The design of VSC is 

considered based on zeroing the output y = x1 of the 

second order system given by 

1 2

2 0 1 1 2

,

,

x x

x a x a x u

=

= − − +

�

�
 (31) 

where the control input u is described by equation (8). 

Concerning Theorem 2, if 2

1 0
0,4a a− ≥  the slope of 

the switching surface is given by  

2
1 1 0

1,2

4
.

2

a a a

c

± −
=  (32) 

Then, the SMD and the RD are 

{ }1 2 1 2
: ( , ) | 0 ,

SMD
D x x cx x= + =  (33) 

{ }1 2 1 2
: ( , ) | ,

RD
D x x cx x K= + <  (34) 

where c is shown in (32). 

The URD is the whole state-space as shown in Fig. 1.  

Concerning Theorem 1, if the parameter c is not 

chosen as described by (32), we obtain 

 

Fig. 1. Phase plane of SMD from Theorem 2. 

 

 

Fig. 2. Phase plane of SMD from Theorem 1. 

 
2

1 0
0.c a c a− + ≠  (35) 

Then the SMD of the system is given by 

1 2 1 2 1
2

1 0

: ( , ) | 0, ,
SMD

K
D x x cx x x

c a c a

 
 

= + = < 
− +  

(36) 

and the URD is the whole state-space as shown in Fig. 2. 

The SMD on the switching surface is maximized when c 

is chosen to minimize | c2 − a1c
 + a0

 |. However, as can be 

seen from Fig. 2, the SMD will never be the whole 

switching surface.  

As the subsequent step, the design of VSC with 

nonlinear switching surfaces for the second order system 

described by equation (31) is considered. In fact, 

nonlinear switching surfaces are not usually adopted in 

the literature due to their computational complexity, as 

compared to linear switching surfaces. However, it 

shows advantages in dealing with many cases, such as 

terminal sliding mode and input saturation [8,9]. 

The switching surface is chosen as follows [10] 

1 2
( ) ( ) ,C x xσ = +x  (37) 

where C(x1) is a function of x1. 

The following theorem is said to be valid based on the 

proof that follows. 

Theorem 3: For the system described by (31), the 

state trajectory on the sliding motion C(x1) + x2 = 0 is 

stable if C(x1) satisfies 

1 1 1
( ) 0, 0.C x x x> ≠  (38) 

Proof: Chose a Lyapunov function as follows 

2

1

1
( ) .

2
V x=x  (39) 

Thus, 
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1 1 1 1
( ) ( ) 0.V x x x C x= = − <
� �x  (40) 

Then, the state trajectory on the sliding motion C(x1) + 

x2 = 0 is stable.             � 

The first derivative of (37) is given by 

1
( ) ( ) sgn( ),G x k sσ = −� x  (41) 

where 

0

1

11 1
.( ) ( )

dC
G x C

dx
a C a x−= − +  (42) 

Then, the SMD is given by 

{ }2

SMD 1 2 1
: | ( ) 0, ( ) .D C x x G x k= ∈ + = ≤�x  (43) 

The first step in the traditional design method is to 

choose C(x1). For example, when C(x1) = cx1, a linear 

switching surface (2) is obtained, and then the SMD and 

the RD can be calculated thereafter. It can be seen from 

(43) that if a function G(x1) that satisfies |G(x1)| ≤ k can 

be found, then the whole switching surface is SMD. The 

corresponding C(x1) can be derived from (42). Evidently, 

such G(x1) can be found easily. 

Concerning the case where a0=a1=0, the following can 

be derived from (41)  

1

( ) sgn( ).
dC

C k
dx

σ σ= − −� x  (44) 

Assuming that 

1 1 1
( ) sgn( ), 0 ,G x g x g k= < <  

the following can be derived from (42) 

1

1

sgn( ).
dC

C g x
dx

= −  (45) 

A proper solution of (45) can be given as follows 

1 1 1
( ) sgn( ) 2 .C x x g x=  (46) 

Then, the nonlinear switching surface is given by 

1 1 1 2
( ) sgn( ) 2 .x g x xσ = +x  

Besides, if we assume that 

2 1 1 1 1

2
( ) arctan( ), 0 ,

2
G x g x g k= − < <  

another nonlinear switching surface can be derived as 

follows 

2

2 1 1 1 1 1 1
( ) sgn( ) 2 arctan( ) log(1 )x g x x g xσ = − +x + x2. 

Examples of SMD of second order system are listed in 

Table 1, where different switching surfaces are chosen. It 

can be seen from Table1 that when a traditional linear 

switching surface is chosen, the SMD is not the whole 

linear switching surface, but rather it reduces to some 

local domain in the phase plane. However, the SMD can 

be the whole switching surface if a proper nonlinear 

switching function is chosen. 

 

5. DESIGN OF VSC FOR HIGH ORDER LINEAR 

SYSTEMS WITH BOUNDED INPUTS 

 

The controllable canonical form of (1) can be derived 

as follows by using transformation matrix T 

1 11 1 12 2

2 21 1 22 2

,

,

x

x A x u

= +

= + +

�

�

x A x A

A x
 (47) 

where the control input u is given by (8), and  

Table 1. SMD of the second order system. 

Parameter G/C SMD of variable structure control system 

a0=0 

a1=0 

C(x1) 2 1
,x cx= −

1 2
.

k
x

c

<  

G1(x1) 2 1 1
sgn( ) 2 .x x g x= −  

G2(x1) 
2

2 1 1 1 1 1 1
sgn( ) 2 arctan( ) log(1 )x x g x x g x= − − + . 

a0=0 

C(x1) 2 1
,x cx= −

1

1

.
( )

k
x

c c a
<

−

 

G1(x1) 
1

1 2
( ) 0,h x x

−

+ =  1
1 1 12

1 1

1
( ) sgn( ) log 1 .

g a
h x x x

a ga

 
= − + 

 
 

a1=0 

C(x1) 2 1
,x cx= − 1 2

0

.

k
x

c a

<

+

 

G1(x1) 
0 0,a >

2

2 1 0 1 1sgn( ) 2 ,x x a x g x= − − + 1

0

2
.

g
x

a
<  

0 0,a <
2

2 1 0 1 1sgn( ) 2 .x x a x g x= − − +  

G2(x1) 
0 0,a >  No solution 

0 0,a <  2 2

2 1 0 1 1 1 1 1 1sgn( ) 2 arctan( ) log(1 ).x x a x g x x g x= − − + − +  
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11 12T

21 22

,

A

 
= =  

 

A A
TAT A

A
 .

1

 
=  
 

0
TB  

Without lose of generality, the objective of the 

controller is given by 

lim ( ) 0.
t

t
→∞

=x  

It can be seen from Section 4 that any point in the 

URD, which does not satisfy the reaching condition may 

approach to zero within a finite time. However, it is 

difficult to find a general method for calculating the 

URD since it also depends on the structure of the system. 

As we know, any point in the RD will approach to zero 

within a finite time. Thus, if the initial state is in the RD, 

the stability of the closed-loop system can be guaranteed. 

The following discussions are based on this considera-

tion. 

 

5.1. Step-by-step variable structure controller 

In this section, the RD and the SMD of the VSC will 

be investigated, and a novel design method of the VSC 

referred to as Step-by-Step Variable Structure Controller 

(SSVSC) will be proposed. 

A linear switching surface is chosen as 

1 1 2
,xσ = = +cx c x  (48) 

where c =[c1 1]. 

By substituting (48) into (47), we obtain 

1 0 1 0
,σ= +�x A x B  (49) 

0 1 0
sgn( ),kD σσ σ= + −� C x  (50) 

where 
0 11 12 1

,= −A A A c
0 12

,=B A
0 1 11 21
= + −C c A A  

1 12 1 22 1
,−c A c A c

0 1 12 22
.D A= +c A  

If σ = 0, equation (49) can be expressed as  

1 0 1
,=�x A x  (51) 

which represents the sliding motion, where A0=A11–A12c1. 

And c1 can be designed by using the pole placement me-

thod.  

Equation (50) represents a reaching motion, which can 

be used to investigate the RD. Assume that 

( )0 0 1 1 0 2
,D D x m + + < C c x  (52) 

then 

0 1 0 0 1 0
.D mDσ σ+ ≤ + <C x C x  

From (50), we can obtain  

0 1 0
sgn( )

sgn( ) 0.

( )

( )

k d

m

D

k d

σ σ σ

σ σ

σ σ= +

<

+

− + <

−� C x
 

That is, 0σσ <� is established. 

It can be seen from the above analysis that if the 

control input is bounded, the RD is not the whole state–

space. Rather, it reduces to some local domain that 

satisfies (52), as shown in Fig. 3. Therefore, the SSVSC 

method is proposed, which involves the following four 

steps: 

Step 1: Choose c1 in (48) to stabilize the sliding 

motion in equation (51); 

Step 2: Calculate the RD from equation (52): <x  

α, α > 0;  

Step 3: Divide the VSC process into n steps where 

( )0
min | , ,
m

n m m m

α

  
= ≥ ∈ 

  
�

x

 and x(0) is the initial 

state of the system; 

Step 4: SSVSC strategy: The control law given by (7) 

is applied to the i th (i < n) step of the VSC whose initial 

state is 
(0)

.n

α

 
× 

 

x

 When the control accuracy meets 

certain conditions (i.e., , 0),ε ε< >x  the (i + 1)th VSC 

process will start when 1 .i n+ =  

It can be seen that the state trajectory is always in RD 

by using SSVSC strategy. 

 

5.2. Moving-surface variable structure controller 

In this section, a novel nonlinear switching surface is 

proposed as follows 

1 1 2
( (0) 0,) (0) ,t t

= e = x e
λ λ

σ λ
− −

− + >−c x x c x cx  (53) 

where c =[c1 1]. Then, ( (0)) 0=σ x stands for a cluster 

of parallel sliding surfaces with (48). 

From (47) and (53), we obtain 

1 0 1 0 0
(0) ,te

λ
σ

−

= + +�x A x B E x  (54) 

0 1 0 0
(0 ( ,) sg )nt

D F k de
λ

σ σσ
−

= ++ + −� C x x  (55) 

where 
0 12

E = A c  and 
0 22 1 12

) .(F λ= + +A c A c  

It can be seen from (53) that x(0) is on the sliding 

surface. Assume that the control input (7) could make the 

state trajectory stay on the sliding surface. From (54), we 

obtain 

1 0 1 0
(0) .te

λ−
= +�x A x E x  (56) 

By integrating (56), we obtain 

1 0 1 0 1
0

1
= (0) (0).

t
t

dt e
λ

λ

−

− +∫x A x E x x  (57) 

Since A0 is negative definite, then 

0 0

1 1
2 (0) (0) 2 (0) .

λ λ

 
≤ + ≤ + 

 

E E
x x x x  (58) 

1
x

2
x

0 0 1

m

D+C c

0

m

D

0

 

Fig. 3. SMD in phase plane. 
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From (58), we obtain 

0 1 0 0 1 0

0

0 0

(0) (0)

2 (0) .

t
F e F

F

λ

λ

−+ ≤ +

  
≤ + +  
   

C x x C x x

E
C x

 

From (55) and (58), if the following inequality is satis-

fied, then 0σσ <�  and 

0

0 0
(

.2
0)

F
m

λ

  
+ + <  

   

E
C

x
 (59) 

It can be seen that the RD is independent of the initial 

state, and the state trajectory could stay on the sliding 

surface σ = 0 if proper c and λ are chosen. Besides, it can 

be seen from (53) that the state trajectory goes to zero on 

c1x1 + x2 = 0 when .t →∞  

The design process of Moving-Surface Variable 

Structure Controller (MSVSC) involves the following 

steps: 

Step 1: Choose c1 in (48) to stabilize the sliding 

motion given by (51); 

Step 2: Calculate λ by Substituting c1 into (59). If such 

λ does not exit, then go back to step 1. 

The switching surfaces of the SSVSC and the MSVSC 

are shown in Fig. 4. 

 

6. SIMULATIONS 

 

In order to demonstrate the effectiveness of the 

proposed control schemes, numerical simulations are 

performed and presented in this section with an 

illustrative example pertaining to the attitude control of a 

flexible spacecraft. The dynamic equations of a flexible 

spacecraft undergoing maneuvering are given as follows 

T ( ),J + = u+d tθ�� ��υ η  (60) 

0,+ + =θ+
���� �C Kη η η υ  (61) 

where J is the moment of inertia of the flexible space-

craft, θ is the attitude angle, 
Nη

∈�υ is the coupling 

vector between attitude and vibration modes, K= 

2{ , 1, , }
N N

ni
diag w i N η η

η

×

= ∈� �  is the stiffness matrix, 

{2 , 1, , }
N N

i ni
diag w i N η η

η
ζ

×

= ∈� �C = is the damping 

matrix, u is the control input acting on the rigid hub of 

the flexible spacecraft, and 
Nη

∈�η  is the modal coor-

dinate vector. N
η

is the number of flexible modes. 

Let T
= [ ]θ θ� �x η η  and transform equations 

(60)-(61) into the state–space equation  

+ ,u�x = Ax B  (62) 

where 

1 1
,

− −

 
 
− − 

0 I
A =

M K M C

 
1

,

−

 
 
 

0
B =

M E

 

T

,

J 
 
 

M =
υ

υ Ι

T
[1 ] ,0E =

0
= ,
 
 
 

0

0
K

K
 

0
= .
 
 
 

0

0
C

C
 

In this study, pointing control and simultaneous vibra-

tion suppression are the main objectives. Without loss of 

generality, it is assumed that the flexible spacecraft ma-

neuvers from an initial state x(t0) to x(tf), that is 

lim ( ) ( ).f
t

t t
→∞

=x x  

The parameters of the simulated flexible spacecraft are 

chosen as follows: J = 280kg·m2, w = 0.768, 1,N
η
=  

= [−1.256 0.918 −1.672]υ kg1/2m/s2, ζ=0.0056, |u|≤ 10 

Nm, (0) (0) 0,θ = =η ( ) 0.3ftθ = rad, and ( ) 0.ft =η  

The poles of the linear system (51) are set to (−1 −1 

−1), where c =[0.005  −0.457  −0.148  1.000]. The 

parameters of the SSVSC are α = 0.1538, and ε = 10−2rad. 

Thus, the attitude maneuvering can be divided into the 

following two steps: (0 0)→(0.15 0) →(0.3 0). The pa-

rameter of the MSVSC is λ= 0.1. 

It can be seen from Fig. 5 that the desired angular 

displacement is accurately achieved with simultaneous 

vibration reduction. According to Figs. 5(a) and 5(b), the 

switching time of the SSVSC is at about 20 sec. The 

initial states are in the RD at each step, and its trajectory 

stays on the switching surfaces once they meet, as shown 

in Fig. 5(d). Compared with the SSVSC, the control 

input of the MSVSC experiences relatively long duration 

of action at the beginning of the maneuvering, which 

results in 13% overshoot in the attitude angle (see Fig. 

5(a)) and large amplitude of the elastic coordinates (see 

Fig. 5(c)). Moreover, if the switching time is chosen as 

an odd multiple of half cycle of the elastic vibration, the 

elastic vibration will be reduced efficiently. 

 
(a) Switching surfaces of SSVSC. 

 
(b) Switching surfaces of MSVSC. 

Fig. 4. Switching surfaces in phase plane. 
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(a) Time response of attitude angle. 

 
(b) Time response of control torque. 

 
(c) Time response of modal coordinate. 

 
(d) Phase plane of attitude angle. 

Fig. 5. Simulation results of a flexible spacecraft. 

 

7. CONCLUSIONS 

 

In this paper, design of VSC for single-input LTI 

system with bounded inputs was studied. The concepts of 

SMD, RD and URD were introduced and it was found 

the URD is the whole phase plane when the state matrix 

of a linear system is Hurwitz and the SMD is reduced to 

some local domain in the linear switching surface when 

the state matrix of a linear system is not Hurwitz. For a 

second order system, the SMD is the whole switching 

surface if a proper nonlinear switching function is 

selected. Moreover, the SSVSC and MSVSC methods 

proposed in the paper can be used for designing the VSC 

for LTI systems with bounded inputs. Finally, the results 

of numerical simulations demonstrated the effectiveness 

of the proposed methods. 
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