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ABSTRACT 
The traditional locomotion paradigm of quadruped robots 

is to use dexterous (multi degrees of freedom) legs and 
dynamically optimized footholds to balance the body and 
achieve stable locomotion. With the introduction of a robotic 
tail, a new locomotion paradigm becomes possible as the 
balancing is achieved by the tail and the legs are only 
responsible for propulsion. Since the burden on the leg is 
reduced, leg complexity can be also reduced. This paper 
explores this new paradigm by tackling the dynamic locomotion 
control problem of a reduced complexity quadruped (RCQ) with 
a pendulum tail. For this specific control task, a new control 
strategy is proposed in a manner that the legs are planned to 
execute the open-loop gait motion in advance, while the tail is 
controlled in a closed-loop to prepare the quadruped body in 
the desired orientation. With these two parts working 
cooperatively, the quadruped achieves dynamic locomotion. 
Partial feedback linearization (PFL) controller is used for the 
closed-loop tail control. Pronking, bounding, and maneuvering 
are tested to evaluate the controller’s performance. The results 
validate the proposed controller and demonstrate the feasibility 
and potential of the new locomotion paradigm. 

1     INTRODUCTION 
Locomotion using legs is usually thought to have better 

traversability compared to wheeled/tracked locomotion in 
unconstructed environments. At present, several quadruped 
robots have been successfully developed, including the well-
known Big Dog series [1], HyQ [2], ANYmal [3], MIT Cheetah 
series [4], etc. The core locomotion technology behind these 
robots is the motion planning algorithm, which is to use 
optimization techniques to find the proper gait sequence, step-
timing, footholds, as well as foot trajectory [5-7]. To simplify 
the control problem and maintain similar dexterity as 
quadrupedal animals, most quadrupedal robots chose a tailless 
structure with three degrees of freedom (DOF) legs. 

However, by looking to nature, tails are widely used as 
appendages for animals to assist in maneuvering, balancing, 
manipulation, and propelling. Among all these benefits, the core 
advantage is that the tail can provide a means of influencing the 
body dynamics independent of the leg’s ground contact. 
Therefore, various case studies [8-14] were carried out to 
investigate the tail’s usefulness in helping the locomotion of 
mobile robots. Although effective and successful, most existing 
research focuses on simple airborne righting tests and few trials 
on dynamic locomotion of legged robot have been conducted. 
As for the existing tail controllers, momentum-based tail motion 
planning and traditional trajectory tracking controller (e.g., PID) 
are the mainstream approaches. Nonlinear geometric control has 
not been applied yet, which has the potential advantage of being 
more stable and robust than the experience-based controllers. 

Another important observation based on existing tail 
research is that after the tail was introduced to adjust the robot 
orientation, the mobile platform may no longer need a 
complicated leg system to achieve balance. The leg complexity 
(in terms of DOFs) could be reduced such that the legs are only 

S

zs

ys xs

P

zpyp

xp

(a) (b)

FIGURE 1. (a) The conceptual design of a reduced 
complexity quadruped (RCQ) with a biomimetic robotic tail 

realizing the new locomotion paradigm. (b) The abstract 
model used in this paper where the green arrows on the feet 

indicate the ground reaction force (GRF). 
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responsible for propelling. Following this idea, a new 
quadrupedal locomotion paradigm might be feasible whereby 
the leg complexity is reduced on the account of incorporating an 
onboard robotic tail system, especially multi-link tails since 
they can provide more control inputs. This newly proposed 
locomotion paradigm has several advantages, resulting in a 
simpler mechanical structure and fewer actuators due to the 
reduction of the DOFs in each leg. More importantly, with less 
control input from the leg, the focus of locomotion control is 
shifted from finding proper footholds to finding the proper tail 
controller, which is thought to be much simpler since the latter 
does not require direct interaction with the environment (the 
control problem degenerates into a classic nonlinear control 
problem) while the former usually leads to time-consuming, 
large scale, highly nonlinear optimization problem. However, 
this new paradigm also has trade-offs such that it does not have 
the same dexterous motion as the traditional quadruped. For 
instance, a traditional 12-DOF quadruped can change its 
orientation without moving its footholds while a simplified 
quadruped without abduction joints is unable to do this (unless 
using tail when the quadruped is airborne). 

Therefore, this paper aims to explore this new paradigm by 
tackling the dynamic locomotion problem of a reduced 
complexity quadruped (RCQ) with a robotic tail, as shown in 
Fig. 1a. As the first step, the biomimetic tail is abstracted into a 
pendulum tail, and only pronking and bounding gaits are 
considered. 

The contributions of this work are summarized as follows. 
(1) Dynamic locomotion of a point-feet reduced complexity 
quadruped with a pendulum tail, is achieved. (2) The results 
validate the feasibility and potential of the new locomotion 
paradigm, i.e. a simplified legged robot with a tail. (3) A new 
locomotion control framework that coordinates the open-loop 
leg motions and the closed-loop tail controller, is proposed. (4) 
Partial feedback linearization is successfully applied to 
formulate the tail controller. 

The rest of this paper is organized as follows. Section 2 
describes the robotic system and the dynamic modeling process. 
Section 3 presents the locomotion control framework that 
coordinates the leg motion and the tail motion. Section 4 applies 
the partial feedback linearization control technique to formulate 
the closed-loop tail controller. Section 5 describes the numerical 
experiments to verify the tail controller and to evaluate the 
locomotion performance. 

2     ROBOT DESCRIPTION AND SYSTEM MODELING 
This section presents relevant information about the target 

robotic system and the special modeling issues with the new 
system. 

2.1   Single DOF Robotic Leg 
The RCQ consists of four single DOF legs (previously 

proposed by the authors [15]) and one point-mass single-link 
tail. The leg mechanism and corresponding foot trajectory are 
shown in Fig. 2, where part i is the driving crank. Since the 
mechanism has only one DOF, the foot trajectory is a fixed 

curve and the only controllable variables are the crank position 
and the crank speed. The crank position has a one-to-one 
correspondence with a point on the foot trajectory and the 
associated pushing angle ߠ௣, which can largely determine how 
each leg pushes against the ground. The crank speed affects the 
pushing speed against the ground. These two variables together, 
determine the leg’s ground pushing motion, which in turn 
generates the ground reaction force (GRF) that drives the 
quadruped motion. Therefore, the leg motion planning for the 
RCQ locomotion task requires determining the crank angle and 
the corresponding crank speed for the ground touchdown and 
liftoff events. 

2.2  Floating Base Dynamic Model 
The traditional modeling process for multibody system 

dynamics usually requires defining a fixed body (usually the 
ground) as the root. This modeling approach demonstrated 
success in legged robot modeling, such as the point-foot biped 
[16] and the point-foot quadruped [17]. However, this is not the 
natural way that a body moves and the model number increases 
as the contact point increases (for instance, for a quadruped, 
there are 2^4=16 dynamic models). The transition among 
models increases even more as the model number increases. As 
a comparison, the floating-base model [18] frees the fixed 
connection between the ground and the robot, and uses 
environmental contact forces to drive the robot’s motion. This 
modeling approach concurs more with the human’s intuition 
and enables implementing properties of the environment (e.g., 
terrain information). This paper applies this modeling idea and 
the equation of motion (EOM) is formulated as 

ሷܙۻ ൅ ۶ሺܙ, ሶܙ ሻ ൌ ۸௧௔் ૌ௧௔ ൅ ۸௙
(1) ܎்

where ۻ ∈ Թ଼ൈ଼ is the system inertia matrix, and ۶ ∈ Թ଼ൈଵ is 
the generalized loading due to Coriolis force, centrifugal force, 
and gravity. ۸௧௔ ∈ Թଶൈ଼  and ۸௙ ∈ Թଵଶൈ଼  map the actuation 
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FIGURE 2. Left: kinematic diagram of the single DOF 
leg mechanism. Right: mechanical design of the single 

DOF robotic leg. Same label indicates the same link/joint. 
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torque ૌ௧௔ ∈ Թଶൈଵ  and the GRF ܎ ∈ Թଵଶൈଵ  to the generalized 
space, respectively. Note that in this paper, only foot contacts 
are considered and the tail contacts with the ground as well as 
other body parts, are not considered. To reduce model 
complexity, the leg inertia is neglected in this paper based on 
the discussion in [7] that the swing leg motion usually has 
marginal influence on the quadruped’s overall motion. This 
judgment is also the theoretical foundation of many well-known 
locomotion models, such as the linear inverted pendulum. 
However, neglecting the leg inertia only eliminates the 
appearance of the leg terms in the dynamic equations. The legs 
still participate in the locomotion task through ground pushing 
actions. Therefore, the generalized coordinates are chosen as 
ܙ ൌ ሾ்ܠ	૖்	હ்ሿ் ∈ Թଷ ൈ ॺହ , where ܠ ∈ Թଷൈଵ  and ૖ ∈ ॺଷൈଵ 
are the quadruped torso position and orientation, respectively. 
હ ∈ ॺଶൈଵ is the joint variables for the tail subsystem.  

2.3   Equations of Motion Using Virtual Work Principle 
The virtual work principle is used to find the components in 

Eq. (1). Referring to Fig. 1, the inertial frame 
ΣS ≔	ሺS,	ܠ௦,	ܡ௦,	ܢ௦ሻ is attached to the ground and the body-fixed 
frame ΣP ≔	ሺP,	ܠ௣,	ܡ௣,	ܢ௣ሻ is attached to the rectangle center ܲ, 
which is formed by the four hip joint locations. The initial 
orientations of ΣP and ΣS are the same. The rotation matrix ܀	ௌ ௉ 
from frame ΣP to ΣS is defined by the pitch (߶௫ about ܠ௦), roll 
(߶௬ about ܡ௦), and yaw (߶௭ about ܢ௦) rotations with respect to 
the fixed axes. Therefore, 

ௌ	܀ ௉ ൌ ௫ሺ߶௫ሻ (2)܀௬ሺ߶௬ሻ܀௭ሺ߶௭ሻ܀

Then the torso angular velocity and angular acceleration are 
obtained as ૑ ൌ ሾ߶ሶ௫	߶ሶ௬	߶ሶ௭ሿ்  and ૑ሶ ൌ ሾ߶ሷ௫	߶ሷ௬	߶ሷ௭ሿ் , 
respectively. The tail variables હ ൌ ሾߙ௥	ߙ௦ሿ்  are defined with 
two consecutive relative rotations ߙ௥  and ߙ௦  about axis ܡ௣  and 
the rotated axis ܠ௣, respectively. The components in Eq. (1) are 
formulated as 

ۻ ൌ ݉௕۸௕,௫
் ۸௕,௫ ൅ ۸௕,ఠ

் ۷௕۸௕,ఠ ൅ ݉௧۸௡்۸௡ (3)

۶ ൌ ݉௕۸௕,௫
் ܏ ൅ ۸௕,ఠ

் ૑෥۷௕૑ ൅݉௧۸௡்܏ ൅݉௧۸௡்۸ሶ௡ܙሶ  (4)

۷௕ ൌ ௌ	܀ ௉ ۷	௉ ௕ ௉	܀ ௌ (5)

where ܏ ൌ ሾ0	0	݃ሿ் . ݉௕ , ݉௧ , and ۷௕  are the torso mass, tail 
mass, and torso moment of inertia, respectively. ۸௕,௫, ۸௕,ఠ, and 
۸௡ are the Jacobians corresponding to the torso position ܠ, torso 
orientation ૖ , and tail tip displacement, respectively. All 
Jacobians including the foot displacement Jacobian ۸௙  are 
computed manually. 

2.4   Physics-based Contact Model 
The classical approach to model the foot-ground contact is 

to assume that the ground is a rigid surface and the impact 
happens instantaneously [19]. However, this model misses 
important terrain information, and more importantly, it induces 
a sudden jump in the state space, which can lead to failure of 
the trajectory optimization (due to the resulting non-smooth 

Jacobian and Hessian matrices induced by the sudden jump). In 
comparison, the physical contact model [20] was proposed and 
used to model the foot-ground interaction. This paper applies 
this physics-based contact model and the GRF is computed as in 
Eq. (6) and the normal force ܎௡  is modeled as a nonlinear 
spring-damper system. 

܎ ൌ ௡܎ ൅ ௙܎ ൌ ௦ܢ‖௡܎‖ ൅ ௦ܠ‖௫܎‖ ൅ ฮ܎௬ฮܡ௦ (6)

‖௡܎‖ ൌ maxሼܭ௡ݖଷ/ଶ ൅ ,ሶݖଵ/ଶݖ௡ܭ௡ܦ 0ሽ (7)

The static friction is modeled as a linear spring-damper system 
while the kinetic friction is modeled using the classic Coulomb 
friction model. Therefore, the friction terms are calculated as 

‖௫܎‖ ൌ ቐ
,‖௡܎‖ߤ ݔ௫ܭ ൅ ሶݔ௫ܭ௫ܦ ൐ ‖௡܎‖ߤ

ݔ௫ܭ ൅ ሶݔ௫ܭ௫ܦ , else     
െ܎‖ߤ௡‖, ݔ௫ܭ ൅ ሶݔ௫ܭ௫ܦ ൏ െ܎‖ߤ௡‖

(8)

ฮ܎௬ฮ takes the same form as ‖܎௫‖, except replacing ݔ with ݕ. 

3     EVENT-BASED LOCOMOTION CONTROL 
Locomotion control considers the leg motion planning and 

the tail controller simultaneously. Namely, the leg and tail 
motions should work cooperatively to achieve the overall 
locomotion goal. This section addresses the coordination 
problem of the combined leg-tail system. 

As shown in Fig. 3, the overall locomotion controller 
structure mainly consists of three modules: the central pattern 
generator (CPG), the tail controller, and the Crank Motion 
Planning (CMP) module. The CPG is essentially a finite state 
machine (FSM), which takes the events from the quadruped-
environment interaction as inputs (for instance, front feet touch 
the ground or the body pitch angle reaches a certain value), 
triggers the state transition, and then executes the corresponding 
actions. The corresponding actions include determining the leg 
sequence, leg timing, tail controller switch (when to switch to 
which tail controller), and the tail controller objective ૖ௗ. 

The tail controller module contains two controller 
candidates. One is the tail orientation controller (TOC) which is 
used to adjust the quadruped orientation. The other is the resting 
damping controller (RDC) which is used to stabilize the tail 
motion. These two candidates are picked by the CPG depending 
on the actual FSM design. When the TOC is used, the CPG 
needs to determine the tail controller objective ૖ௗ  which 

Crank Motion 
Planning

Quadruped
Tail 

Controller
τta q, q
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Environment

GRF
CPG 

(FSM)

Leg Sequence

ϕd, ϕd
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Events (e.g. ground contact, orientation trigger)

ϕ, ϕ
.

FIGURE 3. Locomotion controller structure for leg-tail 
coordination 
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defines the desired quadruped orientation (see Section 3.1 for 
more details). 

The CMP module determines the crank motion parameters 
(e.g. start point, endpoint, rotation speed, and start time) for 
each leg based on the feed-in leg sequence information. Since 
the single DOF leg mechanism is optimized based on the 
assumption that the crank rotates at a constant speed, the CMP 
module also uses constant speed for each crank rotation. Note 
that due to the fixed foot trajectory, CMP can determine the 
crank motion directly by looking at the one-to-one 
correspondence table between the foot trajectory and the crank 
position. Since this paper neglects the leg inertia to simplify the 
analysis, the output of the CMP is directly fed into the 
quadruped to set the crank positions. For actual crank control 
with leg inertial loadings, another trajectory tracking module is 
required following the CMP module to generate the crank 
control torque. The following subsections detail the FSM design 
for specific locomotion modes. 

3.1   Bounding Motion Planning 
Bounding is the gait where the quadruped’s front legs and 

rear legs touch the ground alternatively. For traditional 
quadruped robots with 3-DOF per leg, bounding is achieved by 
searching for the proper stance leg motion so that the torso 
orientation could be controlled indirectly. However, for the 
RCQ with a fixed feet curve, the foothold and the leg height 
cannot be controlled at the same time, which results in an 
uncontrollable torso orientation. Therefore, the tail system has 
to be used to achieve the bounding gait. 

The FSM of the RCQ bounding gait is designed as shown 
in Fig. 4, where it mainly consists of three phases, including the 
standup phase, the righting phase, and the landing phase. The 
stance phase with four feet on the ground is the start point of the 
motion. The standup phase is triggered by the front legs lifting 
and ended by all feet leaving the ground. The righting phase 
refers to the airborne stage, and during this phase, the tail 
controller takes charge to adjust the torso orientation as needed. 
The landing phase follows the airborne righting phase and is 
triggered by only the front legs touching the ground. Note that 
the transition from the landing phase to the standup phase has to 
pass the stance phase. However, due to the short period of time 
(less than 0.1s) of this intermediate phase, the standup phase is 

connected with the landing phase directly inside the gait cycle. 
Based on the description in Section 2.1, the GRF is mainly 
determined by the leg configuration (crank position) and crank 
speed. However, it is also affected by the previous GRF and the 
overall loading distribution. For instance, due to the center of 
mass (COM) position and the extra weight from the tail, the rear 
feet usually have larger GRF than the front feet. Therefore, a 
larger crank speed is required for the rear legs to lift the whole 
quadruped. Moreover, to guarantee the proper functioning of 
the FSM, the cranks are set to go back to the same position 
ଵߠ) ൌ െ50  degrees) in every cycle before landing. This can 
avoid unpredictable GRFs and offers a subsequent standup 
phase similar to the initial condition. For the bounding gait, the 
RDC is not used during the locomotion cycle. 

The core design parameters for the bounding motion 
planning are the crank speed, tail controller objective ૖ௗ, and 
the timing to turn on the TOC. The crank speed is tuned 
manually by observing the bounding height. For a desired 
height of 0.6 meters, a crank speed of -25 rad/s is used. The tail 
controller objective is designed as ૖ௗ ൌ ሾ߶௫ௗ	߶௬ௗሿ் ൌ
ሾെ5		0ሿ் degrees for the righting phase and the TOC is turned 
on when ߶௫ ൐ 10 degrees. For the transition from the landing 
phase to the standup phase, ૖ௗ is set to ሾ5		0ሿ் degrees and the 
TOC keeps active as long as the feet are in contact with the 
ground. 

3.2  Pronking Motion Planning 
Pronking is a special case of bounding such that the 

standup landing phases are merged into the stance phase. To 
achieve this effect, the desired control objective is set to 
૖ௗ ൌ ሾ߶௫ௗ	߶௬ௗሿ் ൌ ሾ0		0ሿ்  degrees. The TOC is turned on 
immediately after the feet leave the ground (flight phase). The 
same crank cycle position (ߠଵ ൌ െ50 degrees) and crank speed 
(-25 rad/s, which results in 0.55 meters high pronking) are used. 
The only difference from the bounding is that the RDC is used 
when the feet touch the ground. 

3.3  Maneuvering 
Using an active tail, maneuvering is thought easier in 

comparison with the traditional tailless quadruped because a 
tailed quadruped can just swing the tail to change its heading 
direction while a traditional quadruped needs to conduct a time-
consuming trajectory optimization to find the proper maneuver 
motion. Therefore, to make the RCQ maneuver ߠ௠ degrees, the 
૖ௗ  could be set as ሾ߶௫ௗ	߶௬ௗ	߶௭ௗሿ் ൌ ሾ0		0		ߠ௠ሿ்  in the flight 
phase. However, since the control objectives (3 in this case) are 
more than the control inputs (the pendulum tail model used in 
this paper can only provide 2 inputs), the control objectives 
cannot be satisfied simultaneously, and the quadruped may 
experience unsmooth/unstable landing. 

4     TAIL CONTROLLER FORMULATION 
This section derives the tail controller mentioned in the 

previous section, based on the nonlinear feedback control 
formulation. 

3 Righting 1 Stance

GRF

Action: all 
legs push 
ground

Action: tail 
orientation 

control 

2 Standup4 Landing

Action: rear 
legs push 
ground

Action: tail 
orientation 

control, front 
legs push ground

front liftoffrear liftofffront touchdown

front liftoff

FIGURE 4. The bounding gait FSM design 
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For the new locomotion paradigm, the core task of the tail 
system is to balance the quadruped during locomotion so that 
the simplified legs could focus on propelling. Therefore, a 
closed-loop tail controller that can automatically adjust the torso 
orientation is needed. Considering the high under-actuation 
characteristics of the system and the unnecessity of controlling 
tail position, the input-to-output partial feedback linearization 
(PFL) controller [21] is found suitable for this task. The 
“partial” here refers to the fact that this formulation only 
linearizes the selected state dynamics, in this case, the torso 
orientation ૖. 

Firstly, the desired output is constructed as 

ܡ ൌ ௦ܙ െ ሻ (9)ݐௗሺܙ

such that the selected states ܙ௦ ൌ ܙ܁  follows the desired 
trajectory ܙௗ  and ܁ ൌ  ݏ is the selection matrix, where ܙ߲/௦ܙ߲
indicates the dimension of ܙ௦ . Then the desired output 
dynamics could be constructed as 

ሷܡ ൅ ۹ௗܡሶ ൅ ۹௣ܡ ൌ ૙ (10)

where ۹ௗ ൌ ௗ۷௦ൈ௦ and ۹௣ܭ ൌ ௣ܭ,ௗܭ ௣۷௦ൈ௦ withܭ ൐ 0. Solving 
for ܙሷ  from Eq. (1) and extracting ܙሷ ௦ from ܙሷ  yields 

ሷܙ ௦ ൌ ଵሺ۸௧௔்ିۻ܁ ૌ௧௔ െ ۶ሻ (11)

Substituting Eq. (11) into Eq. (10) and solving for ૌ௧௔ , the 
feedback controller is derived as 

ૌ௧௔ ൌ ଵ۶ିۻ܁ାሺ܆ ൅ ሷܙ ௗ ൅ ۹ௗሺܙሶ ௗ െ ሶܙ ௦ሻ ൅ ۹௣ሺܙௗ െ ௦ሻሻܙ (12)

in which ܆ ൌ ଵ۸௧௔்ିۻ܁ , and ܆ା  indicates the Moore-Penrose 
inverse of ܆. 

The stability proof of the controller is straightforward. 
Substituting Eq. (12) back into the system dynamics yields 

ሷܙۻ ൅ ۶ ൌ ۸௧௔் ଵ۶ିۻ܁ାሺ܆ ൅ ሷܙ ௗ െ ۹ௗܡሶ െ ۹௣ܡሻ	 (13)

Multiplying ܆ାିۻ܁ଵ on both sides, Eq. (13) becomes 

ሷܙା܆ ௦ ൅ ଵ۶ିۻ܁ା܆
ൌ ଵ۶ିۻ܁ାሺ܆܆ା܆ ൅ ሷܙ ௗ െ ۹ௗܡሶ െ ۹௣ܡሻ (14)

which is further simplified to 

ሷܡାሺ܆ ൅ ۹ௗܡሶ ൅ ۹௣ܡሻ ൌ ૙ (15)

Therefore, if ݏ ൌ 2  (i.e. ܆  is a square matrix), ܆ା ൌ  ଵି܆
(assuming that ܆ is away from its singularities). Then 

ሷܡ ൅ ۹ௗܡሶ ൅ ۹௣ܡ ൌ ૙ (16)

which is known to be exponentially stable (unforced damped 
harmonic oscillator). However, if ݏ ് 2 (i.e. ܆ is not square), 
the stability may not be guaranteed. Specifically, if ݏ ൌ  ା is܆ ,1
column independent (2 by 1 matrix) such that the null space of 
Eq. (15) is the same as Eq. (16). The output ܡ is still stable in 
this case. If ݏ ൐ ା܆ ,2  is row independent such that the null 
space of Eq. (15) is no more than just a zero vector, which could 
expand to a line or a plane. In this case, the output stability is no 
longer guaranteed. Note that the controller is derived based on 

airborne dynamics (܎ ൌ ૙). Stability is also not guaranteed after 
the feet are touching the ground. Moreover, in PFL, limitations 
on the tail range of motion are not applied. 

4.1   Tail Orientation Controller (TOC) 
When the quadruped is airborne, the control goal is to make 

sure that the robot lands on the ground at a desired orientation. 
Therefore, using the PFL formulation, the TOC is derived by 
setting the state error of the torso roll and pitch as the output 
function, i.e. ܡ ൌ ሾ߶௫ െ ߶௫ௗ		߶௬ െ ߶௬ௗሿ்  where ߶௫ௗ  and the ߶௬ௗ 
are the desired pitch and roll angles, respectively. As discussed 
before, ܆ is invertible in this case and ܆ା ൌ  ଵ. However, inି܆
some applications, the locomotion direction (yaw angle) may be 
also a control objective. For these cases, the output ܡ could be 
chosen as ሾ߶௫ െ ߶௫ௗ		߶௬ െ ߶௬ௗ		߶௭ െ ߶௭ௗሿ்  and the least square 
solution ܆ା ൌ ሺ܆்܆ሻିଵ்܆  maybe used to find the generalized 
inverse of ܆. As for the one-dimensional output cases (e.g., the 
only motion of interest is rolling), ܆  inverse is calculated as 
ା܆ ൌ  .ሻିଵ்܆܆ሺ்܆

4.2  Resting Damping Control (RDC) 
When the quadruped is on the ground and is in a stable 

position, the active tail motion may not be necessary. For these 
situations, the tail controller should simply let the tail go back to 
its natural position. Therefore, the RDC is formulated as a 
simple pure damping system 

ૌ௧௔ ൌ െdiagሺ ሾܭௗଵ ܭௗଶሿሻહሶ  (17)

where ܭௗଵ, ௗଶܭ ൐ 0  are the damping coefficients. Since this 
controller is equivalent to introducing friction into the tail 
joints, the system maintains its stability after switching to this 
controller. Note that this controller does not use the PFL 
formulation derived in the previous sections. 

5     SIMULATION 
All numerical computations were conducted in Matlab 

where the built-in function ode45 with 1E-6 relative tolerance 
and 1E-8 absolute tolerance, was used for numerical integration. 
For the PFL controller output dynamics, the differentiation gain 
ௗܭ  is determined by setting the desired time constant to 

TABLE 1. RCQ parameters 

Para. Value Para. Value 

݉௕ 12 Kg ܭ௡ 5E4 Nm-1

Torso Length 0.6 m ܦ௡ 0.75 

Torso Width 0.3 m ܭ௫,	ܭ௬ 3E4 Nm-1 

Tail Length 0.45-0.9 m ܦ௫,	ܦ௬ 0.01 

Ib 
p  diag([0.36 0.09  

0.45]) Kgm2 ܭௗଵ,	ܭௗଶ 1 

݉௧ 1 Kg 1 ߤ 

݃ 9.8 ms-2
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߬ ൌ 0.02 seconds so that the output could be zeroed in 5߬ ൌ 0.1 
seconds (5߬ guarantees 0.5% error). The proportional gain ܭ௣ 
was determined by the critical damping condition that reduces 
the oscillation. These two conditions yield 

߬ ൌ ௗܭ/2 ൌ 0.02 ⇒ ௗܭ ൌ 100 (18)

ௗܭ
ଶ െ ௣ܭ4 ൌ 0 ⇒ ௣ܭ ൌ 2500 (19)

All the RCQ parameters used are collected in Table 1, except 
for the leg dimensions which can be found in [15]. Tail torque 
saturation is set to 30Nm. 

5.1   Pronking 
Due to its simplicity, the first set of simulations is for the 

pronking gait where the quadruped is released in the air at a 
height of 0.5 meters and starts acting at 0.3 seconds. The 
simulation lasts 10 seconds and a longer tail (0.9 meters) is used 
to achieve more robust performance. Figure 5 shows the 
corresponding time response plots and the pitch angle ߶௫ phase 
portraits. From the figures, the pronking gait achieves stable 
locomotion and the phase portraits evolve in a bounded range. 

5.2  Bounding 
Using the same setup as the pronking gait, a bounding 

simulation is conducted. The time response plots and the pitch 
angle ߶௫ phase portraits are presented in Fig. 6. It can be found 
that due to the alternative foot contact, the bounding gait has 
two impact events (two nondifferentiable points in the z plot). 
The phase portrait is also more chaotic than the pronking gait. 
The GRF and the tail controller effort are also computed and 
presented in Fig. 7 where the “FL” and “FR” stand for the front 
left leg and the front right leg respectively. The “߬௥” and “߬௦” 
are the two components of ૌ௧௔ , in correspondence to the ߙ௥ 
joint and the ߙ௦ joint of the tail, respectively. From the figure, it 
can be found that the rolling joint is actually not used due to the 
fact that both the pronking and the bounding are essentially two 
gaits in the sagittal plane. It can be also found that the actual tail 
controller uses saturated torque for the orientation re-righting. 

5.3  Maneuvering Case Study 
As stated in Section 3.3, the two tail inputs are not able to 

fully control the three objectives in the maneuvering motion. 
Therefore, only a case study was performed, to observe the 
usefulness of the tail on the maneuvering locomotion. Figure 8 
shows the snapshots of the maneuvering case study where a 
0.45 meters long tail is used without applying torque saturation 
and ߠ௠ is set to 15 degrees. Due to the least square solution (see 
Section 4.1), the tail controller cannot exactly track the desired 
control objective, which results in an actual turning angle of 
16.45 degrees. This suggests that tails with more inputs should 
be used for fully controlling the quadruped orientation. 

5.4  Discussion 
It is worth noting that for the RCQ, due to the single DOF 

leg, if three legs touch the ground at the same time (equivalent 
to adding spherical joints between the feet and the ground), the 
mobility (the overall DOF) reduces to zero. Therefore, all gaits 
requiring three legs touching the ground at the same time 
(except for pronking since the spherical constraints introduced 
by pronking are redundant constraints) are impossible, e.g. 
walking and ambling. With help from the tail, all other gaits, 
namely, trotting, pacing, cantering, and galloping, are 

FIGURE 5. Pronking gait test: position information and 
phase portrait (bottom right) 

FIGURE 6. Bounding gait test: position information and 
phase portrait (bottom right) 

FIGURE 7. Bounding gait test: GRF and control effort 
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theoretically possible. 
In addition, one main deficiency observed for the current 

control strategy was that the tail motion range was not 
restricted, which is not possible in practice. Therefore, one 
focus for future work is to modify the tail controller such that 
the tail motion constraints could be introduced in the controller 
design stage, e.g. using numerical optimal control to impose 
state constraints in the PFL framework. However, for many 
applications such as the dynamics-based optimal design, the tail 
controller deficiency may not become a problem because these 
applications usually only consider the resultant whole robot 
performance, and the internal tail controller does not affect the 
overall performance due to the conservation of momentum. 

6     CONCLUSION 
This paper tackled the dynamic locomotion control 

problem of a point-feet reduced complexity quadruped that 
consists of four single DOF legs and one pendulum tail. Due to 
the special limitations on the legs, a tail is actively used to 
balance the quadruped while the legs are only responsible for 
propelling. To coordinate these two functions, a locomotion 
control framework that generates leg sequence, leg timing, and 
tail controller objective was proposed. The partial feedback 
linearization technique was used to formulate the closed-loop 
tail controller. Due to this special locomotion control strategy, 
no trajectory optimization was required. Three sets of numerical 
experiments including one pronking gait test, one bounding gait 
test, and one maneuvering case study, were conducted to verify 
the effectiveness of the tail controller and to evaluate the 
locomotion controller performance. The results validated the 
proposed control strategy. 
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