A NEW EXTENSIBLE CONTINUUM MANIPULATOR USING FLEXIBLE PARALLEL MECHANISM AND RIGID MOTION TRANSMISSION

Yujiong Liu, Pinhas Ben-Tzvi*
Robotics and Mechatronics Laboratory
Mechanical Engineering Department
Virginia Tech
Blacksburg, VA, USA

ABSTRACT
An extensible continuum manipulator (ECM) has specific advantages over its non-extensible counterparts. For instance, in certain applications, such as minimally invasive surgery or tube inspection, the base motion might be limited or disallowed. The additional extensibility provides the robot with more dexterous manipulation and larger workspace. Existing continuum robot designs achieve extensibility mainly through artificial muscle/pneumatic, extensible backbone, concentric tube, and base extension etc. This paper proposes a new way to achieve this additional motion degree of freedom by taking advantage of the rigid coupling hybrid mechanism concept and a flexible parallel mechanism. More specifically, a rack and pinion set is used to transmit the motion of the i-th subsegment to drive the (i+1)-th subsegment. A six-chain flexible parallel mechanism is used to generate the desired spatial bending and one extension mobility for each subsegment. This way, the new manipulator is able to achieve tail-like spatial bending and worm-like extension at the same time. A proof-of-concept prototype was integrated to verify the mobility of the new mechanism. Corresponding kinematic analyses are conducted to estimate the workspace and the motion non-uniformity.

1 INTRODUCTION
Inspired by nature, continuum robots, especially continuum manipulators, are developed to achieve animal-like compliant-to-object property. This property is thought critical for certain applications that require passive compliance, for instance, medical robots that need to interact with human tissues, manipulation robots that need to handle fragile objects, or exploration robots that need to go through unexpected narrow passages. Traditional solutions for this kind of robots focus on using deformable materials (e.g., an elastic backbone) and deformable actuation (e.g., tendon or rod driven). Existing examples using this technology include the Elephant trunk [1], Tentacle robot [2], and the DDU [3], etc.

*Corresponding author – bentzvi@vt.edu
the extension motion of most extensible manipulators in this
type is usually passive, especially when a tendon driven system
is used. This causes the shortcoming that the manipulator stiffness decreases significantly as the manipulator extends.
Therefore, besides making the backbone extensible, a more straightforward way is to directly use an extensible actuator,
such as a pneumatic actuator or an artificial muscle [14]. This
approach avoids the passive extension disadvantage but usually suffers from other shortcoming such as the need to use a heavy
actuator and control implementation issues.

Rigid coupling hybrid mechanism (RCHM) is a new family of
hybrid mechanisms that was previously proposed by the
authors to design multi-link robotic tails [15]. This type of
mechanisms take advantage of the traditional hybrid mechanism
structure [16] but use specific transmission mechanisms to
couple adjacent subsegment mechanisms. Following this novel
motion transmission idea, designing curvature bending robots
based on rigid links becomes possible and more importantly,
designing general manipulation robots with special mobility
requirements is also promising since the vast existing parallel mechanisms could be well utilized as subsegment mechanisms.

Therefore, this paper aims to apply the RCHM idea to
develop a new type of extensible continuum manipulator
(ECM) that has both the advantages of the extensible backbone
approach (relatively small actuator) and the extensible actuator
approach (active extension control). The desired ECM should
have 3DOF in total, in which two achieve the spatial bending
mobility and one achieves the axial extension mobility. An
overview of the final prototype is shown in Fig. 1.

The following sections are organized as follows. Section 2
introduces the background and motivation in detail. Section 3
describes the mechanical design of the robot system. Section 4
formulates the kinematics based on constant curvature bending
assumption and conducts workspace analysis as well as motion
non-uniformity evaluation accordingly. Section 5 presents the
prototyping details and the experimental results. The conclusion
section recaps the main points of this paper and discusses future
work.

2 RIGID COUPLING HYBRID MECHANISM

This section presents the previously proposed rigid
coupling hybrid mechanism concept, which is the foundation of
the new mechanism in this paper.

The RCHM concept was proposed to address the challenge of
designing spatial curvature bending mechanisms based on
rigid links. The core idea is to take advantage of the motion
from the i-th link to drive the (i+1)-th link instead of
transmitting motion directly from the base to each link. This
method of motion transmission is realized by the “rigid
coupling” mechanism that couples the (i+1)-th link with the i-th
link. As for the basic mobility for each subsegment, traditional
parallel mechanisms are used. Therefore, combining these two
mechanism components, the new hybrid mechanism is able to
amplify the subsegment mobility to the manipulator scale. For
instance, a 3DOF spatial RCHM may be designed by serially
connecting 3DOF parallel mechanisms and using rigid
transmission mechanisms to couple the adjacent parallel mechanisms.

Figure 2 shows the topological structure of the RCHM,
which mainly consists of five components: base, actuation, link,
parallel mechanism (PM), and rigid transmission mechanism
(RTM). The PMs realize the basic motion for each subsegment.
The RTMs serve as the “rigid coupling” mechanisms that
transmit motion from the i-th PM to the (i+1)-th PM. Therefore,
the overall motion sequence is that the actuators drive PM1
directly, then the RTM1 copies the PM1 motion to drive PM2.
After PM2 moves, RTM2 transmits the motion from PM2 to
drive PM3, and so on and so forth.

Figure 2. The rigid coupling hybrid mechanism concept

RCHM has two main advantages compared with traditional
cable driven hyper-redundant designs. Firstly, RCHM usually
has good rigidity due to the parallel mechanism used for each
subsegment, which is known to have higher stiffness, precision
and load bearing in comparison to its serial counterpart.
Moreover, using rigid transmission design avoids the commonly
observed cable driven issues, such as the unidirectional driving
problem and the cable tension control problem. These two
features, together, provide the RCHM with good rigidity and
enable the mechanism to respond to high frequency input,
which is critical for applications that need high speed or high
dynamic motion. Secondly, since the RCHM has centralized
actuation, the weight of the robot itself could be significantly
reduced. As a result, the motion accuracy of the robot could be
increased and the controller could be simplified.

3 MECHANICAL DESIGN

This section details the mechanical design of the new
extensible manipulator. For subsequent discussions, “P” stands
for prismatic joint, “R” stands for revolute joint, and “S” stands
for spherical joint (which is also referred to as ball joint). An
actuated joint is labeled by an underlined letter.

3.1 PM Design Using Flexible Parallel Mechanism

The first step for the RCHM design is to select the
appropriate PM to realize the subsegment motion, which is the
2R1T (two radial rotations and one axial translation) motion in
this case. There are many existing researches on the mechanism
synthesis for this motion [17], among which the simplest might
be the 3PSR mechanism [18]. However, to take advantage of the motion generated by this 3PSR mechanism and transmit motion to the next subsegment, another three chains are required. These three additional chains are placed close to the three original chains respectively so that each additional chain behaves simultaneously and similarly with its original chain counterpart. This way, the additional chains are able to “measure” the motion generated by the original chains. Therefore, these three additional chains are usually called “Measuring PM” while the original three chains are called “Driving PM” due to their different functionalities. It is important to note that due to the physical thickness of the links, the closeness of the additional chain with the original chain could never become zero, which leads to the fact that the “Measuring PM” could never exactly copy the motion of the “Driving PM”. As a result, this fact brings in non-uniform twist motions (the non-uniformity could be very small if the two chains were designed close enough) among subsegments. More details about this will be discussed in section 4.4.

![Figure 3](image1.png)

Figure 3. (a) The original PM design using rigid links and rigid joint (b) The corresponding kinematic diagram of the PM

Since the “Driving PM” is already fully constrained, the three additional chains cannot exert more constraints onto the system. Therefore, three SSP chains are selected to guarantee enough degrees of freedom for the “Measuring PM”. Fig. 3a shows one potential subsegment design based on this mechanism configuration and Fig. 3b is the corresponding kinematic diagram. The overall mobility can be verified by the Grübler-Kutzbach criterion (G-K criterion) [19] as

\[
M = 6n - \sum_{i=1}^{j}(6 - f_i)
\]

\[
= 6 \times 13 - 3 \times (5 + 3 + 5) - 3 \times (3 + 3 + 5) = 6
\]

where \(n\) is the number of moving bodies, \(j\) is the number of joints, and \(f_i\) is the corresponding DOF of joint \(i\). Although the calculation shows the mechanism having 6 DOF, three of them are actually internal DOF (self-rotation with respect to the axis connecting the two ball joint centers) induced by the SS chains, which do not affect the overall mobility. Therefore, the actual mobility of the 3PSR-3SSP mechanism is 3.

The PM together with the rack and pinion transmission forms the basic motion propagation mechanism. For instance, referring to Fig. 3a, if an input motion (indicated by the solid arrow) is exerted on Rack \(M_{i+1}\), Rack \(D_{i+1}\) is pushed right through the gear. This motion causes the clockwise rotation of Link \(i+1\), which further induces the relative motion of \(M_{i+1,1}\) (indicated by the dashed arrow). Because of the gear, this relative motion continues to be transmitted onto Rack \(D_{i+1,1}\), which becomes the driving motion for the next subsegment.

Using rigid links and joints provide the advantages of being able to bear larger load and having higher stiffness. The disadvantages include complicated mechanical structure that makes the manufacturing process more challenging in terms of manufacturing tolerance control problems (e.g., backlash is rapidly amplified due to the motion propagation characteristics of this type of mechanism). Therefore, flexible parallel mechanisms [20,21] (FPM) are proposed to replace the rigid link-based PM. The flexible structure facilitates the manufacturing process significantly and increases the accuracy by avoiding backlash (i.e., the deformation of the material itself does not induce backlash). Moreover, the flexible structure has the same compliant-to-obstacle benefit as traditional continuum robots.

![Figure 4](image2.png)

Figure 4. The modified PM design that uses flexible rods to replace the rigid links and rigid joints. A local section view of link \(i\) shows the internal rack and pinion transmission mechanism.

As show in Fig. 4, the modified subsegment design uses flexible rods to replace the original rigid links and joints. Similarly, the six chain FPM is subdivided to one “Driving FPM” and one “Measuring FPM”. After changing to flexible rods, the mounting and connection among parts become easier too. For instance, the rods could be easily connected with the racks and the links using glue. The rack and pinion sets are also placed internally to achieve better assembly accuracy.

3.2 System Assembly

Figure 5 shows the overall design of the new ECM, where
the ECM body is comprised of four serially connected subsegments. Customized housing covers are designed to mount three linear actuators. The connection between the actuation module and the ECM body is achieved by a specifically designed first link and three special racks.

![Figure 5. Overall design of the new ECM](image)

4 KINEMATIC ANALYSIS

For the preliminary kinematic analysis, certain assumptions could be made to simplify the computation. Due to similar mobility as the traditional extensible continuum manipulator, circular arc bending [22] is also assumed here. That is, each subsegment is regarded as a constant curvature bending continuum robot section and each rod together with its rack is regarded as the driving cable/rod for that continuum robot section. This way, each subsegment shape is fully defined by the three chains in the “Measuring FPM” and the three chains in the “Driving FPM” only measure the corresponding arc length and transmits to the next subsegment.

![Figure 6. Subsegment kinematic model based on the circular arc bending assumption](image)

4.1 Subsegment Kinematics

Figure 6 illustrates the subsegment kinematic model based on the circular arc bending assumption, where the red arcs are the abstraction of the driving chains with length $d_{i,j}$ and the blue arcs are the abstraction of the measuring chains with length $m_{i,j}$. $i \in \{1,2,3,4\}$ represents the i-th link and $j \in \{1,2,3\}$ represents the j-th chain in one subsegment. Body fixed frame $\sum C_i = (C_i, x_i, y_i, z_i)$ is placed at the center of the i-th link. l_i, κ_i, r_i, and θ_i denote the arc length, curvature, radius, and central angle for the central bending arc (in purple dash-dot line), respectively. φ_i is the angle of the bending plane from x_i axis, and R is the distance of the driving/measuring arcs from the central arc. Based on mathematical definitions, the following relationships are self-satisfied

$$l_i = \varphi_i r_i$$

$$r_i = 1/\kappa_i$$

Therefore, with three arc lengths $d_{i,j}$, the bending shape is fully determined. The forward kinematics is obtained in the same way as in [22]

$$l_i = \frac{d_{i,1} + d_{i,2} + d_{i,3}}{3}$$

$$\kappa_i = \frac{2\sqrt{d_{i,1}^2 + d_{i,2}^2 + d_{i,3}^2 - d_{i,1}d_{i,2} - d_{i,1}d_{i,3} - d_{i,2}d_{i,3}}}{R(d_{i,1} + d_{i,2} + d_{i,3})}$$

$$\varphi_i = -\text{atan2} \left(d_{i,3} + d_{i,2} - 2d_{i,1}, \sqrt{3}(d_{i,3} - d_{i,2}) \right) + \frac{e}{2R}$$

where the second term in Eq. (6) is the angle shift due to the mounting point offset of the driving arc on the sectional view plane (the red dots are not exactly located on the z_i axis).

Knowing the bending shape, the three measuring arc lengths could be obtained by inverse kinematics as

$$m_{i,j} = l_i - l_i \kappa_i R \cos(\varphi_i + \frac{e}{2R} + \frac{7\pi}{6} - \frac{2\pi}{3}j)$$

For the $(i+1)$-th subsegment, the driving arc length should be replaced by the measuring arc length from the i-th subsegment. That is

$$d_{i+1,j} = m_{i,j}$$

Note that the above and the following equations do not include the $\kappa_i = 0$ case, which could be easily handled in actual programming by manually assigning values to all the variables.

4.2 Overall Kinematics

The overall kinematic model could be easily obtained as long as the subsegment wise kinematics is known. That is, with l_i, κ_i, and φ_i known, the vector from C_i to C_{i+1} is obtained as

$$p_{i,i+1} = r_i \sin \varphi_i y_i + (r_i - \cos \varphi_i) (\cos \varphi_i x_i - \sin \varphi_i z_i)$$

The rotation from $\sum C_i$ to $\sum C_{i+1}$ is formulated as

$$^i R_{i+1} = e^{\theta_i \hat{\xi}}$$

where $\xi = -\sin \varphi_i x_i - \cos \varphi_i z_i$ is the rotation axis vector and the hat above ξ indicates the skew-symmetric expansion. Equation (10) could be easily evaluated by the Rodrigues’ formula [23] as

$$^i R_{i+1} = I + \sin \theta_i \hat{\xi} + \hat{\xi}^2 (1 - \cos \theta_i)$$

With local displacement $p_{i,i+1}$ and $^i R_{i+1}$ known, the global displacement of $\sum C_i$ can be obtained recursively.
p_i = p_{i-1} + p_{i-1,i} \tag{12}

R_i = l^{-1}R_iR_{i-1} \tag{13}

with the initial displacement of p_1 = 0 and R_1 = I.

4.3 Workspace Analysis

The workspace of the new ECM is defined by all the points that the manipulator tip can reach in 3D space. Based on the measurement of prototype, R = 25mm, range of d is from 42mm to 62mm, and ε = 2.3mm. The workspace of the new ECM is generated accordingly and shown in Fig. 7.

![Figure 7. Workspace of the new ECM](image)

The workspace shows that the fully shortened manipulator has a length of 176mm and the fully extended case has a length of 256mm. The maximal extension ratio (for what percentage the ECM can extend the most) is (256-176)/176=45.45%. The three ridges appearing on both the concave and the convex surfaces correspond to a single actuator driving cases.

4.4 Motion Non-uniformity Evaluation

As discussed in section 3.1, due to the rod mounting angle shift ε/R ≠ 0, the “Measuring PM” cannot exactly copy the “Driving PM” motion. This fact leads to a twist motion along the manipulator axial direction, which breaks the desired uniform motion for each subsegment. To evaluate the non-uniformity induced by this phenomenon, different angle shift ε/R values are tested and the corresponding manipulator configurations with the same inputs (d_{1,1} = 42mm, d_{1,2} = 52mm, d_{1,3} = 52mm) are plotted in Fig. 8., in which five more subsegments (in black) are added to make the twist motion more visible. The other colors indicate the four subsegments in the actual design.

As shown in Fig. 8, the twist effect becomes quite serious as ε/R is beyond 10 degrees and more subsegments worsen the situation significantly. Therefore, for practical design purposes, reducing ε to a value as small as possible and choosing fewer subsegments helps reducing the undesired twist motion. For the existing design with a minimized ε value (2.3mm), the twist effect is also evaluated for different manipulator configurations. The non-uniformity is defined by the difference between the last subsegment bending plane angle φ_s and the first subsegment bending plane angle φ_1. Numerical calculation is conducted and plotted in Fig. 9, which surprisingly shows that the non-uniformity (the value in the figure is 15.81°) is actually not affected by the manipulator configuration.

![Figure 9. Distribution of non-uniformity for different ECM configurations](image)

This can be verified analytically by substituting Eq. (8) into Eq. (6), which yields

\[-\tan(\varphi_{i+1} - \varphi_i) = \frac{m_{i,3} + m_{i,2} - 2m_{i,1}}{\sqrt{3}(m_{i,3} - m_{i,2})} \tag{14} \]

Substituting Eq. (7) into Eq. (14) and evaluating, Eq. (14) is simplified as

\[\varphi_{i+1} - \varphi_i = \frac{e}{R} \tag{15} \]

which means that the twist effect only depends on the rod mounting angle shift ε/R and the subsegment number.

5 PROTOTYPING AND EXPERIMENTS

To verify the proposed mobility of the new mechanism, a proof-of-concept prototype was integrated with 3D printing (using ABS plastic as the building material). Three Actuonix linear actuators (L12-30-210-6-P) with corresponding controller boards were used to drive the manipulator. For the rack and pinion transmission, off-the-shelf 0.5 modulus nylon gears were utilized and customized racks were 3D printed. The flexible rods were made out of Trik Fish line with 1.35mm diameter. The rods and the plastic parts were connected by super glue.

As shown in Fig. 10, the prototype exhibits the proposed 2R1T mobility, for which the most shortened length is measured as 177mm and the most extended length as 234mm. The extension ratio is computed as 32.2% which is smaller than
the ratio predicted by the workspace analysis. This is partially due to the smaller range applied on the linear actuator to avoid potential damage on the prototype. The maximal bending angle was measured to be around 80 degrees.

Although the prototype demonstrates good bending shapes as a whole, the first subsegment was observed to have larger bending angles than the rest. The reason was partially due to the non-uniform motion effect that was discussed in section 3.1. But more importantly, the non-uniformity for the first subsegment comes from its large driving force. As shown above, the new manipulator mechanism utilizes the propagation way to transmit motion from the base to the link tip. From conservation of energy, we know that this method will accumulate and amplify the driving force from each subsegment onto the first subsegment, which makes its flexible rods to deform more than that of the rest. This observation suggests that a more accurate statics-based kinematic model is required to better calculate the manipulator shape.

![Figure 10. The new ECM mobility demonstration](Image)

6 CONCLUSION AND FUTURE WORK

By leveraging the rigid coupling hybrid mechanism concept and the flexible parallel mechanisms, a new 3DOF extensible continuum manipulator with spatial bending (2R) and one axial extension (1T) mobility was proposed. The core idea lies in using the motion of the i-th link to drive the (i+1)-th link so that the local motion can be copied and propagated from the base link to the tip link. To achieve this design goal, flexible parallel mechanism was used to realize the basic 2R1T subsegment motion and rack and pinion set was used to couple the adjacent subsegments. This way, the 2R1T motion is copied by each subsegment and the entire manipulator achieves spatial bending and one extension mobility. To calculate the configuration of this new mechanism, a simplified kinematic model was formulated. Workspace analysis was also carried out to evaluate the mechanism's capability. A small proof-of-concept was manufactured to verify the proposed mobility. Preliminary tests showed that for the current design, the new manipulator is able to extend 32% of its original length and bend over 80 degrees.

However, the kinematic model in this paper provided just a rough estimation of the actual shape, which ignores the static effects as well as the actual deformation shape of the rods (which can be more approximated by a spline instead of an arc). The first deficiency mainly causes the shape non-uniformity among subsegments since forces couple all parts in a static balancing system. The second deficiency mainly contributes to the shape error inside the subsegment, i.e. the subsegment wise kinematics. Therefore, one of the most important aspects of future work is to develop more accurate kinematic model based on the Coserrat rod theory, which will take the gravity, friction, and external loads into account. Moreover, improving the mechanical design to reduce the friction (e.g., using metal gear rack sets with smaller modulus) will also be the focus. Considering the potential of this new manipulator for medical applications (e.g., minimally invasive surgery), and further miniaturizing the design is also an important pending future work.

ACKNOWLEDGMENTS

This material is partially based upon work supported by the National Science Foundation under Grant No. 1906727.

REFERENCES

