
MOBILE ROBOT OBSTACLE AVOIDANCE BASE ON DEEP REINFORCEMENT LEARNING

Shumin Feng*
Robotics and Mechatronics Lab
Mechanical Engineering Dept.

Virginia Tech
Blacksburg, VA, USA

shumin@vt.edu

Hailin Ren*
Robotics and Mechatronics Lab
Mechanical Engineering Dept.

Virginia Tech
Blacksburg, VA, USA

hailin@vt.edu

Xinran Wang
Robotics and Mechatronics Lab
Mechanical Engineering Dept.

Virginia Tech
Blacksburg, VA, USA

wxinran6@vt.edu

Pinhas Ben-Tzvi**
Robotics and Mechatronics Lab
Mechanical Engineering Dept.

Virginia Tech
Blacksburg, VA, USA

bentzvi@vt.edu

ABSTRACT
Obstacle avoidance is one of the core problems in the field

of mobile robot autonomous navigation. This paper aims to
solve the obstacle avoidance problem using Deep
Reinforcement Learning. In previous work, various
mathematical models have been developed to plan collision-
free paths for such robots. In contrast, our method enables the
robot to learn by itself from its experiences, and then fit a
mathematical model by updating the parameters of a neural
network. The derived mathematical model is capable of
choosing an action directly according to the input sensor data
for the mobile robot. In this paper, we develop an obstacle
avoidance framework based on deep reinforcement learning. A
3D simulator is designed as well to provide the training and
testing environments. In addition, we developed and compared
obstacle avoidance methods based on different Deep
Reinforcement Learning strategies, such as Deep Q-Network
(DQN), Double Deep Q-Network (DDQN) and DDQN with
Prioritized Experience Replay (DDQN-PER) using our
simulator.

Keywords: Obstacle Avoidance; Deep Reinforcement
Learning; Mobile Robots

1. INTRODUCTION
Collision avoidance is one of the major research topics in

the field of mobile robotics. Many robotic applications, such as
rescue, surveillance, and mining require mobile robots to
explore an unknown environment without collision. For fully
controlled robots, the collision avoidance task [1] can be
achieved by a human operator who controls the robot by
sending commands to the mobile robot via cable or wireless
communication. However, this mode of operation is of limited
use in hazardous environments where cable and wireless

communication are unable to be set up. Thus, it is necessary for
a mobile robot to navigate autonomously in some situations.

Generally, a global collision-free path from the current
location of the robot to the goal position can be planned if an
accurate map of the environment is provided. For example,
many solutions to global path planning are based on the A*
searching algorithm [2] or the visibility graph method [3],
which rely on prior information of the environment. However,
in the real world, an environment is not always static, and in a
dynamic environment, robots need to take into account the
unforeseen obstacles and moving objects. Local path planning
or obstacle avoidance algorithms, such as the potential field
method [4] and the dynamic window approach [5] can be
utilized to avoid collisions in a dynamic environment. Under
some circumstances, there is no map available in advance for a
robot to implement the navigation task, which is known as
mapless navigation. Optical flow based methods [6, 7] and
appearance-based methods [8] are popular to solve these
mapless navigation problems.

In this paper, we use Deep Reinforcement Learning (DRL)
to solve the collision avoidance problem and aim to enable the
mobile robot to avoid the obstacles without prior knowledge of
the environment. DRL is a combination of Reinforcement
Learning (RL) and Deep Learning (DL). In general, RL is a
type of machine learning method that allows an agent to learn
to act in an environment based on feedback rewards or
punishments. To solve a simple RL problem, such as the
FrozenLake environment [9] that contains sixteen possible
states, the values for all the possible actions in each state are
listed in a Q-table and can be updated according to the Bellmen
equation. However, the Q-table is not suitable for the RL
problems in many complex environments due to the nearly
infinite number of states and possible actions. In these
circumstances, neural networks were introduced as the
nonlinear approximators to estimate the values for all the
possible actions that extends the RL to DRL. A well-known
recent application of DRL is AlphaGo Zero [10], a program

*Authors contributed equally; **Corresponding author – bentzvi@vt.edu

1 Copyright © 2019 ASME

Proceedings of the ASME 2019
International Design Engineering Technical Conferences

and Computers and Information in Engineering Conference
IDETC/CIE2019

August 18-21, 2019, Anaheim, CA, USA

DETC2019-97536

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2019/59230/6453727/v05at07a048-detc2019-97536.pdf by Virginia Polytechnic Institute and State U

niversity user on 26 N
ovem

ber 2019

https://crossmark.crossref.org/dialog/?doi=10.1115/DETC2019-97536&domain=pdf&date_stamp=2019-11-25

learned to play the game of Go by itself without any human
knowledge and successfully won 100-0 against AlphaGo [11],
which was the first program to defeat a world champion in the
game of Go. Researchers are also exploring and applying RL in
robotics [11, 12], and believe that RL has the potential to train a
robot to discover an optimal behavior surpassing that taught by
human beings in the future.

This work attempts to show the feasibility and practicality
of solving collision avoidance problems with DRL. Our main
contributions are listed as follows: 1) Successful application of
DRL to solve the obstacle avoidance problem for mobile
robots. 2) Development of a simulator in Gazebo as the 3D
training environment for the obstacle avoidance approach to
collect large-scale data to train the neural networks. The
simulator can also be used as the testbed for the robot. 3)
Implementation and comparison of the performances of the
collision avoidance algorithms based on different DRL
methods.

The rest of this paper is organized as follows: An overview
of the background and related work is presented in Section 2.
The implementation of the obstacle avoidance framework and
simulator setup are described in Section 3. In Section 4, we
show and discuss the results of the training and testing. Finally,
concluding remarks are presented in Section 5.

2. BACKGROUND AND RELATED WORK

RL aims to enable an agent to learn the optimal behavior
when interacting with the environment by means of trial-and-
error search as well as delayed reward [14]. The main elements
of an RL problem include an agent, environment states, a
policy, a reward function, a value function, and an optional
model of the environment. Typically, the interaction between
the agent and the environment can be simply described as: at
each time step t , the agent determines the current environment
state s from all possible states S (s S), then it chooses an
action a out of A (a A) according to the current policy

(,)s a . The policy can be considered as a map which shows

the probabilities of taking each action a when in each state s .
After taking the chosen action a , the agent is in a new state s
and receives a reward signal r . The whole process is depicted
in Figure 1.

RL is highly influenced by the theory of Markov Decision
Processes (MDPs). An RL task can be described as an MDP if it

has a fully observable environment whose response depends
only on the state and action at the last time step. A tuple

, , , ,S A P R  can be utilized to represent an MDP, where S is

a state space, A is an action space, P is a state transition
model, R is a reward function and  is a discount factor.

Some extensions and generalizations of MDPs are capable of
describing partially observable RL problems [15] or dealing
with continuous-time problems [9, 10]. RL algorithms need to
be capable of updating the policy due to the training experience
and finally determine the policy that fixes one action for each
state with the maximum reward. Several solutions to RL
problems are presented in the following subsections.

2.1 Q-learning

Q-learning [18] is a basic and popular RL algorithm
developed by Watkins in 1989. It is capable of finding an
optimal policy for an MDP by updating the Q-values table

 ,Q s a based on Bellman Equation:

    
'

(m, a x ', '
a

Q s a r Q s a  . (1)

Equation (1) can be decomposed into two parts: the

immediate reward r and the discounted maximum Q-value of

the successor state   
'

'max , '(
a

Q s a , where γ is a discount

factor, [0,1]  , 's is the successor state and 'a is the action to

be taken to get the maximum Q-value in the state 's .

2.2 Deep Q-networks
Solving an RL problem using linear methods, such as the

Bellman equation, can be simple and efficient, but not all
situations are suitable for updating the action-value iteratively.
DeepMind proposed a deep learning model known as DQN
[19], which is a convolutional neural network trained with a
variant of Q-learning algorithm with experience replay memory
[20], represented as a data set D . The agent’s experience at
each time step can be stored in D , and a mini-batch of
experiences are sampled randomly when performing updates.

The DQN was tested on several Atari games. In these
cases, the game agent needs to interact with the Atari emulator
whose states are represented as 1 1 2 2 1, , , ,..., ,t t ts x a x a a x ,

where tx is the image describing the current screen at each

time step t and ta is the chosen action. The states are

preprocessed and converted to an 84 84 4  image as the input
of the neural network, defined as the Q-network, which has
three hidden layers and a fully-connected linear output layer.
The outputs correspond to the predicted Q-values for each valid
action. A sequence of loss functions ()i iL  are adopted to train

the Q-network:

   2

'
() ((max ', ' , ;); ()i i ia ir Q sL Q s aa     (2)

Figure 1. The interaction between the agent and
the environment

2 Copyright © 2019 ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2019/59230/6453727/v05at07a048-detc2019-97536.pdf by Virginia Polytechnic Institute and State U

niversity user on 26 N
ovem

ber 2019

where   '
(ma ',x ';

a ir Q s a   is the target for iteration i ,

and i
 are the weights from the previous iteration which are

fixed when optimizing the loss function by stochastic gradient
descent. The gradient can be calculated by differentiating the
loss function with respect to the weights as follows:

1'
() ((max((, ;))

(, ;)) (, ;)

 i i ii a

i ii

L Q s a

Q s Q

r

a s a





 

 

  

 


. (3)

2.3 Double Deep Q-networks

One critical shortcoming of DQN is that it sometimes
learns unrealistically high action values, known as
overestimation. DDQN [21] is introduced to reduce
overestimation by separating the action selection and action
evaluation in the target. DDQN was also developed by
DeepMind in 2015. The way that DDQN updates the target
networks is the same as DQN but the target of DDQN differs,
and can be expressed as follows,

'
(,max((; ;)) ,)ii ia
s Q sr Q ay       . (4)

It has two sets of weights, i and i
 . The action is chosen

greedily from the network with weights i at each step, but the

Q-values assigned to that action is from the target network with

weights i
 . This method provides a more stable and reliable

learning process which decreases the overestimation error.

2.4 Double Deep Q-networks Prioritized Experience
Replay

Prioritized experience replay of Double Deep Q-networks
changes the method from randomly sampling experience to
selecting experience based on the priority of each experience
stored in the replay memory. The priority value of each
experience in the replay memory is calculated using temporal-
difference (TD) error [22]:

'
(,ma x ((, ;);)) (,)i i ia
s Q s a Q s ar Q        (5)

where i is the difference between the target value

'
(,max((, ;);)) i i ia

y s Q sQ ar       and the Q-value

(,)Q s a . The transitions from the current state to the next state

with the largest i are replayed from the memory, which is

called pure greedy prioritization. In this case, the transitions
with initially high error are replayed frequently. In order to
avoid a lack of diversity, stochastic prioritization [22], which

interpolates between pure greedy prioritization and uniform
random sampling, is developed to sample the transitions. The
probability of sampling transition i can be defined as:

() i

kk

p
P i

p






 (6)

where ip is the priority of transition i .  is a value within

[0,1] , which determines the prioritization percentage used in

stochastic prioritization. k indicates the size of the minibatch.
Several approaches are available for evaluating the priority, for
example, i ip    , where  is a positive constant to make

sure that ip is not equal to zero in case of 0i  . This method

is known as proportional prioritization, which converts the error
to priority. Another method is known as rank-based
prioritization. In this case, the priority of transition i is defined

as:
1

()ip
rank i

 , where ()rank i is the rank of transition i

based on the value of i .

 The stochastic prioritization also leads to the bias of the
estimated solution. To correct the bias, prioritized experience
replay adds importance-sampling (IS) weights at each
transition, which is expressed as [22],

1 1

()
()i N P i

   (7)

where N is the current size of the memory, ()P i is the

possibility of sampling transition i in equation (6), and  lies

within the range of [0,1] .

2.5 Related Work

The work described in [23] applies the DQN to solve the
obstacle avoidance problem for a mobile robot. It shows that
the well-trained neural network is able to help a robot avoid
obstacles in a simulation environment. However, the raw inputs
from the Kinect sensor mounted on the robot platform need to
be preprocessed by a supervised learning model to create
feature maps for the neural network as the inputs, which
requires more computing power and reduces the algorithmic
efficiency. In addition, only three possible actions are available
for the robot to choose according to the outputs of the neural
network that was trained using the experiences gained from a
simple corridor-like simulation environments. This limits the
mobility and performance of the mobile robot and may lead to
collisions when the robot is navigating in a complex
environment.

3 Copyright © 2019 ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2019/59230/6453727/v05at07a048-detc2019-97536.pdf by Virginia Polytechnic Institute and State U

niversity user on 26 N
ovem

ber 2019

Similarly, in [24], the obstacle avoidance method based on
Asynchronous Deep Deterministic Policy Gradients (ADDPG)
was successfully developed for mobile robots with a laser
sensor. Their neural network can take raw sensor data as inputs
without much preprocessing, but the simulation environments
are still too simple to provide sufficient experiences for training
the neural network.

3. COLLISION AVOIDANCE WITH DRL

This section describes the obstacle avoidance problem and
its formulation. We introduce the implementation details of
three different obstacle avoidance strategies based on DQN,
DDQN, and DDQN-PER. The setup of the simulator is
presented in this section as well.

3.1 Problem Formulation

This paper focuses on enabling differential drive robots to
navigate safely in an environment with narrow paths, corners,
and other types of obstacles. In general, the problem can be
formulated as,

 (,) ()t t tv f  O . (8)

At each time step t , the planner of the mobile robot needs

to generate the required linear velocity tv and angular velocity

t from the observation tO of the environment. In our

approach, no mathematical model is defined to map the input
data that contains the environment information to the proper
commands for the mobile robot. Instead, we consider the
problem as an MDP and use DRL to solve it. All possible
observations from the sensor data form the state space S ,
which is the input of the neural network that works as the
nonlinear function approximator (, ;)Q s a  . This estimates the

values of all the possible actions a in each state s . When the
robot is in state ts at the current time step t , it is supposed to

select the proper action ta according to the action values

provided by the neural network (, ;)tQ s a  and an ε-greedy

policy. Then the robot will receive a reward tr after taking that

action. These transitions  1 1, , ,t t t ts a s r  are recorded and will

be used to update the parameters of the neural network. A large-
scale interaction dataset is required to train the neural network.
Thus, we developed a 3D simulator to provide the training and
testing environment. A virtual Turtlebot with a laser sensor was
put in that environment as the robot platform. To avoid a lack
of generalization capability to different scenarios in the real
world, the training map contains different features for the robot
to gain as many different transitions as possible.

3.3 Simulator

A virtual world was built in Gazebo as the simulation
environment, where a Turtlebot with a 2D laser scanner was
trained to avoid the collisions. Figure 2 shows the complex

circuit used with different environmental features such as
straight tracks, 90-degree turns, and acute- as well as obtuse-
angle corners in order to enrich the experiences of the robot
during learning, and enable the model to generalize to more
complicated situations after training. The Turtlebot is a
differential wheeled mobile robot as shown in Figure 3. The
blue area indicates the measurements of the 2D laser sensor
used. No map is provided in advance for the Turtlebot to locate
any obstacles and plan a collision-free path to travel. It needs to
learn from scratch about how to behave in such an unknown
environment.

3.4 Implementation Details

To implement the obstacle avoidance framework, we
developed a software architecture in the publish-subscribe

Figure 3. The virtual robot in the simulation
environment.

(a)
(b)

(c)

(d)

Figure 2. The training map with different wall
shapes: (a) obtuse angle turn, (b) right angle turn,
(c) acute angle turn, (d) and curve turn.

4 Copyright © 2019 ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2019/59230/6453727/v05at07a048-detc2019-97536.pdf by Virginia Polytechnic Institute and State U

niversity user on 26 N
ovem

ber 2019

pattern utilized the Robot Operating System (ROS). The neural
network was embedded in a motion planner and implemented
using Keras with Tensorflow as the backend. The data from the
sensor were acquired and published in 100 Hz for the motion
planner to subscribe. Then the commands, such as the linear
and angular velocities from the motion planner can be sent to a
low-level controller to control the speed.

 The OpenAI Gym was used to implement our RL task.
The gym environment needs to be set up in advance to define
the components of RL tasks such as states, actions, and
rewards. The data acquired from the sensor contains the
distance values measured by 100 laser rays in a 270 degrees
span. Fifty distance measurements are picked up evenly from
the raw sensor data and converted into values, with a precision
of up to two decimal digits in the range of 0.00m to 6.00m, to
represent the current state ts . Our action set consist of 11

possible actions and each action has two commands: one is to
go forward with constant linear velocity at 0.6 m/s, the other is
an angular velocity 0.8 0.16 (0,1,2, 10)m m m       .

The constant speed ensures the robot could only move forward
instead of pure rotation. Backward motion is not taken into
consideration in this work.

The immediate reward at each time step is assigned based
upon the following equation,

5 (without collision)

1000 (collision)tr


 
. (9)

The mobile robot receives 5 points for each time step if it
does not bump into the wall after taking the chosen action,
otherwise it will receive a punishment of -1000 points.

After the setup of the gym environment, we implemented
the neural network using Keras, a Python deep learning library.
The inputs of the networks are the observations from the laser
data which represent the states of the environment. Two hidden
layers, each with 300 neurons are added to the network with
ReLU as the activation function. The outputs should be the Q-
values of the 11 actions. Different methods were used to update
the parameters of the neural network and the implementation
details are presented in Algorithm 1,2, and 3. Algorithm 1 and 2
use the same sampling method, a minibatch of transitions
sampled randomly from the memory. The difference between
these two algorithms is the target iy to calculate the loss ()L  .

As mentioned in Section 2.3, DDQN needs two sets of
parameters to determine the Q-values of the actions to avoid
overestimation. In Algorithm 3, a rank-based prioritization is
utilized to sample the transitions to improve the efficiency of
the learning process.

Each algorithm was ran for 3000 epochs with each
containing at most 4000 time steps. Once the time step reaches
the maximum value or the Turtlebot crashes into the wall, the
simulation resets with the Turtlebot at a random initial position
and a new epoch starts.

Algorithm 1: DQN

1. Initialize the Gazebo simulator;

 Initialize the memory D and the Q-network with random weight  ;

2: for episode =1, k do

3: Put the visual robot at a random position in the 3D world;

 Get the first state 1s
4: for t = 1,T do

5: With probability ε select a random action ta

6: Otherwise select   ,x ;ma
at iQ s aa 

7: Take action ta ; get reward 1tr and state 1ts 

8: Store transition  1 1, , ,t t t ts a s r  in D

9: Sample random mini-batch of transitions  1 1, , ,i i i is a s r 
10: if 1ir  = -1000 then

11: 1i iy r 
12: else

13: 1 1max (;) (,i
a

i i Q s ay r   
14: end if

15: Calculate  by perform mini-batch gradient descent on the

 Mini-batch of loss 2(, ;))() (QL yi s a  

16: end for

17: end for

Algorithm 2: DDQN

1. Initialize the Gazebo simulator;

 Initialize the memory D and the Q-network with random weight  ;

 Initialize the target Q-network with random weights  
2: for episode =1, k do

3: Put the visual robot at a random position in the 3D world;

 Get the first state 1s
4: for t = 1,T do

5: With probability ε select a random action ta

6: Otherwise select   ,x ;ma
at iQ s aa 

7: Take action ta ; get reward 1tr and state 1ts 

8: Store transition  1 1, , ,t t t ts a s r  in D

9: Sample random mini-batch of transitions  1 1, , ,i i i is a s r 
10: if 1ir  = -1000 then

11: 1i iy r 
12: else

13: 1 11 (,max((, ;);))i iii s Q s ay r Q    
 

14: end if

15: Calculate  by perform mini-batch gradient descent on the

 Mini-batch of loss 2(, ;))() (QL yi s a  

16: Replace the target network parameters    every N step
17: end for

18: end for

5 Copyright © 2019 ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2019/59230/6453727/v05at07a048-detc2019-97536.pdf by Virginia Polytechnic Institute and State U

niversity user on 26 N
ovem

ber 2019

3.4 Validation in Simulator

Two tests were set up to evaluate the performances of the
virtual robot with the well-trained neural networks. Test 1 was
set up as follows:

1. Run the program for three times with different training
methods: DQN, DDQN, DDQN-PER respectively and obtain
three different trained neural networks.

2. Apply the three neural networks to the Turtlebot
successively and let the robot navigate in the training map for
five minutes with each of the networks. The metric for
evaluation of the performances of the neural networks is chosen
as the number of collisions undergone within the five minutes
of simulation.

To prove that the proposed approach can help the robot
navigate an unknown environment, we introduced Test 2:

1. Place the virtual robot with each neural network in two
test maps different from the training map. The detailed
information about the maps is shown in Figure 4.

2. Test the robot with each neural network for five minutes
with the different test maps and record the number of collisions.
The virtual robot will be put in a random location with different
orientations on the map. After the robot travels for 1000 time
steps without collisions, the robot will be spawned to another
random location. This is to demonstrate that the proposed
obstacle avoidance approach is robust and capable of
navigating an unknown environment regardless of the starting

position and the heading. Once the robot is too close to the
wall, the algorithm will stop the virtual Turtlebot and reset it at
another random location.

4. RESULTS

4.1 Training Results

At the beginning of the training, the Turtlebot has no
previous knowledge about the environment and insufficient
experiences are available for it to learn from, and as a result, it
keeps rushing to the walls. After training, the Turtlebot is able
to avoid the collisions and accidents rarely happened as before,
which shows that the Turtlebot managed to learn how to avoid
obstacles gradually. Figure 5 shows an example in which the
well-trained policy guided the Turtlebot to navigate in the
training map successfully without any collision. At each time
step, the observation from the sensor data was fed into the well-
trained neural network. The robot then took the proper action
according to the output of the neural network. This proved that
DRL has the ability to solve the obstacle avoidance problem.

Figure 4. Diagrams of (a) test map 1, and (b) test
map 2.

Algorithm 3: DDQN with prioritized replay

1. Initialize the Gazebo simulator;

 Initialize the memory D and the Q-network with random weight  ;

 Initialize the target Q-network with random weights  
2: for episode =1, k do

3: Put the visual robot at a random position in the 3D world;

 Get the first state 1s
4: for t = 1,T do

5: With probability ε select a random action ta

6: Otherwise select   ,x ;ma
at iQ s aa 

7: Take action ta ; get reward 1tr and state 1ts 

8: Store transition  1 1, , ,t t t ts a s r  in D

9: Sample mini-batch of transitions  1 1, , ,i i i is a s r  using rank-

based prioritization

10: if 1ir  = -1000 then

11: 1i iy r 
12: else

13: 1 11 (,max((, ;) ;))i iii s Q s ay r Q    
 

14: end if

15: Calculate  by perform mini-batch gradient descent on the

 Mini-batch of loss 2(, ;))() (i iQL y ai s  

16: Replace the target network parameters    every N step
17: end for

18: end for

6 Copyright © 2019 ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2019/59230/6453727/v05at07a048-detc2019-97536.pdf by Virginia Polytechnic Institute and State U

niversity user on 26 N
ovem

ber 2019

To evaluate the three algorithms, we recorded the average
Q-values and accumulated rewards from the training. A moving
average filter with a window size of 500 is utilized to process
the data in order to identify the trends clearly in the data. The
plots in Figure 6 show that the learning curves tend to converge
in all three algorithms, which means that these algorithms can
achieve the goal of determining an optimal policy. We first
compared the average Q-values and cumulated rewards from
Algorithm 1 and 2 as shown in the first two rows of Figure 4.
The average Q-values estimated by DQN were higher but the
rewards dropped due to the overestimation. In addition, the
learning curve of DDQN is smoother than that of DQN, which
means that learning with DDQN is more stable. The last plot in

Fig. 6 shows a comparison between DDQN-PER and DDQN. It
is evident that the reward curve of DDQN-PER converge faster
than DDQN. This proved that training a neural network with
prioritized replay in our obstacle avoidance problem can be
more efficient.

In other words, Turtlebot is able to learn to improve its
behavior by interacting with the environment using DRL,
which indicates that unsupervised training of a model has the
potential to solve the obstacle avoidance problems in a
complicated environment.

4.2 Validation of Results
Figure 7 shows an instance of the navigation in the test

environment using the well-trained policy and the Turtlebot
could succeed in navigating around the obstacles. However, the
Turtlebot could be trapped into rotating around in the large
open area instead of exploring the whole environment. This is
because we investigated the possibility and performance of
DRL based on pure obstacle avoidance method and no target
position is considered in this work. Table 1 shows the
performance results from Test 1, where the robot ran with
different neural networks over a duration of five minutes. The
results demonstrate that the neural networks trained with
DDQN and DDQN-PER provide better performance as they
lead the robot to less collisions.

The results from Test 2 are shown in Table 2. The robot

performance is recorded as unsatisfactory in Test Map 1
although the map is significantly simpler in comparison to Test
Map 2. This is because the robot lacks experience in large open
areas. This underlines the significance of the experiences a
robot acquires during training and demonstrates how critical
they are for the superior performance of the robot in an

Figure 6. Average q-values estimated by DQN,
DDQN and the comparison of rewards.

A
ve

ra
ge

 Q
 V

al
ue

s

A
ve

ra
ge

 Q
 V

al
ue

s
A

ve
ra

ge
 Q

 V
al

ue
s

R
ew

ar
ds

TABLE 1

TEST 1: RESULTS

Algorithms NUMBER OF COLLISIONS IN 5 MIN

DQN 3
DDQN 1

DDQN-PER 1

Figure 5. Navigation performance of the well-
trained policy in the training map. The blue area
indicates the laser rays.

Figure 7. Navigation performance of the well-trained
policy in the testing map. The blue area shows the
measurements of the laser sensor.

7 Copyright © 2019 ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2019/59230/6453727/v05at07a048-detc2019-97536.pdf by Virginia Polytechnic Institute and State U

niversity user on 26 N
ovem

ber 2019

unknown environment. As with all DRL approaches, the
proposed obstacle avoidance framework faces the limitation of
real-world transference. The robot may fail to navigate on a
simple map in the real world, if the features in that map are
entirely different from that used in the training environment. It
is expected that this problem can be solved and compensated
for by training the robot in more environments on top of the
experiences it has already learned. We will discuss the
feasibility of this approach in our future work.

5. CONCLUSION

In this work, a virtual Turtlebot is trained to avoid
obstacles in a Gazebo simulator with different optimal training
methods. Three different obstacle avoidance algorithms based
on DRL are implemented and evaluated in this paper. Through
simulations, we demonstrated that the robot has the ability to
avoid collisions after training for 3000 epochs with all three
algorithms. We plan to verify the feasibility and reliability of
the policies through experimentation with a physical robot in
the future. Furthermore, while only one robot is considered in
this paper and no specific goal position is set for the robot for
navigation, we are currently exploring goal-oriented navigation
and multi-robot cooperation in our future work.

REFERENCES

[1] P. Ben-Tzvi, “Experimental validation and field
performance metrics of a hybrid mobile robot mechanism,”
J. F. Robot., vol. 27, no. 3, pp. 250–267, 2010.

[2] P. Hart, N. Nilsson, and B. Raphael, “A Formal Basis for
the Heuristic Determination of Minimum Cost Paths,”
IEEE Trans. Syst. Sci. Cybern., vol. 4, no. 2, pp. 100–107,
1968.

[3] N. J. Nilsson, “A Mobile Automation: an Application of
Artificial Intelligence Techniques,” Int. Jt. Conf. Artif.
Intell., vol. 1969, no. January, pp. 509–520, 1969.

[4] O. Khatib, “Real-time obstacle avoidance for manipulators
and mobile robots,” in Proceedings. 1985 IEEE
International Conference on Robotics and Automation,
1985, vol. 2, pp. 500–505.

[5] O. Brock and O. Khatib, “High-speed navigation using the
global dynamic window approach,” Proc. 1999 IEEE Int.
Conf. Robot. Autom. (Cat. No.99CH36288C), vol. 1, no.
May, pp. 341–346, 1999.

[6] A. Giachetti, M. Campani, and V. Torre, “The use of
optical flow for road navigation,” IEEE Trans. Robot.
Autom., vol. 14, no. 1, pp. 34–48, 1998.

[7] K. Souhila and a Karim, “Optical flow based robot
obstacle avoidance,” Int. J. Adv. Robot. Syst., vol. 4, no. 1,

pp. 13–16, 2007.
[8] N. Ohnishi and A. Imiya, “Appearance-based navigation

and homing for autonomous mobile robot,” Image Vis.
Comput., vol. 31, no. 6–7, pp. 511–532, 2013.

[9] “FrozenLake Environment.” [Online]. Available:
https://gym.openai.com/envs/FrozenLake-v0/. [Accessed:
11-Mar-2018].

[10] D. Silver et al., “Mastering the game of Go without human
knowledge,” Nature, vol. 550, no. 7676, pp. 354–359,
2017.

[11] D. Silver et al., “Mastering the game of Go with deep
neural networks and tree search,” Nature, vol. 529, no.
7587, pp. 484–489, Jan. 2016.

[12] K. Mülling, J. Kober, O. Kroemer, and J. Peters, “Learning
to select and generalize striking movements in robot table
tennis,” Int. J. Rob. Res., vol. 32, no. 3, pp. 263–279, 2013.

[13] A. Y. Ng et al., “Autonomous inverted helicopter flight via
reinforcement earning,” Springer Tracts Adv. Robot., vol.
21, pp. 363–372, 2006.

[14] R. S. Sutton and A. G. Barto, “Chapter 1 Introduction,”
Reinf. Learn. An Introd., 1988.

[15] T. Jaakkola, S. P. Singh, and M. I. Jordan, “Reinforcement
learning algorithm for partially observable Markov
decision problems,” Adv. Neural Inf. Process. Syst., vol. 7,
p. 345, 1994.

[16] K. Doya, “Reinforcement Learning in Continuous Time
and Space,” Neural Comput., vol. 12, no. 1, pp. 219–245,
Jan. 2000.

[17] S. J. Bradtke and M. O. Duff, “Reinforcement Learning
Methods for Continuous-Time Markov Decision
Problems,” Adv. Neural Inf. Process. Syst., pp. 393--400,
1994.

[18] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach.
Learn., vol. 8, no. 3–4, pp. 279–292, 1992.

[19] Y. Zhan, H. B. Ammar, and M. E. Taylor, “Theoretically-
grounded policy advice from multiple teachers in
reinforcement learning settings with applications to
negative transfer,” in IJCAI International Joint Conference
on Artificial Intelligence, 2016, vol. 2016–Janua, pp.
2315–2321.

[20] L. Lin, “Reinforcement learning for robots using neural
networks,” 1993.

[21] W. Chen, M. Zhang, Y. Zhang, and X. Duan, “Exploiting
meta features for dependency parsing and part-of-speech
tagging,” Artif. Intell., vol. 230, pp. 173–191, Jan. 2016.

[22] T. Schaul, J. Quan, I. Antonoglou, and D. Silver,
“Prioritized Experience Replay,” pp. 1–21, 2015.

[23] T. Lei and L. Ming, “A robot exploration strategy based on
Q-learning network,” 2016 IEEE Int. Conf. Real-Time
Comput. Robot. RCAR 2016, pp. 57–62, 2016.

[24] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep
reinforcement learning: Continuous control of mobile
robots for mapless navigation,” IEEE Int. Conf. Intell.
Robot. Syst., vol. 2017–September, pp. 31–36, 2017.

TABLE 2
TEST 2: RESULTS

Maps NUMBER OF COLLISIONS IN 5 MIN
DQN DDQN DDQN-PER

Test Map 1 8 6 6
Test Map 2 2 0 1

8 Copyright © 2019 ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2019/59230/6453727/v05at07a048-detc2019-97536.pdf by Virginia Polytechnic Institute and State U

niversity user on 26 N
ovem

ber 2019

