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ABSTRACT 
Obstacle avoidance is one of the core problems in the field 

of mobile robot autonomous navigation. This paper aims to 
solve the obstacle avoidance problem using Deep 
Reinforcement Learning. In previous work, various 
mathematical models have been developed to plan collision-
free paths for such robots. In contrast, our method enables the 
robot to learn by itself from its experiences, and then fit a 
mathematical model by updating the parameters of a neural 
network. The derived mathematical model is capable of 
choosing an action directly according to the input sensor data 
for the mobile robot. In this paper, we develop an obstacle 
avoidance framework based on deep reinforcement learning. A 
3D simulator is designed as well to provide the training and 
testing environments. In addition, we developed and compared 
obstacle avoidance methods based on different Deep 
Reinforcement Learning strategies, such as Deep Q-Network 
(DQN), Double Deep Q-Network (DDQN) and DDQN with 
Prioritized Experience Replay (DDQN-PER) using our 
simulator.  

Keywords: Obstacle Avoidance; Deep Reinforcement 
Learning; Mobile Robots 

1. INTRODUCTION
Collision avoidance is one of the major research topics in

the field of mobile robotics. Many robotic applications, such as 
rescue, surveillance, and mining require mobile robots to 
explore an unknown environment without collision. For fully 
controlled robots, the collision avoidance task [1] can be 
achieved by a human operator who controls the robot by 
sending commands to the mobile robot via cable or wireless 
communication. However, this mode of operation is of limited 
use in hazardous environments where cable and wireless 

communication are unable to be set up. Thus, it is necessary for 
a mobile robot to navigate autonomously in some situations.  

Generally, a global collision-free path from the current 
location of the robot to the goal position can be planned if an 
accurate map of the environment is provided. For example, 
many solutions to global path planning are based on the A* 
searching algorithm [2] or the visibility graph method [3], 
which rely on prior information of the environment. However, 
in the real world, an environment is not always static, and in a 
dynamic environment, robots need to take into account the 
unforeseen obstacles and moving objects. Local path planning 
or obstacle avoidance algorithms, such as the potential field 
method [4] and the dynamic window approach [5] can be 
utilized to avoid collisions in a dynamic environment. Under 
some circumstances, there is no map available in advance for a 
robot to implement the navigation task, which is known as 
mapless navigation. Optical flow based methods [6, 7] and 
appearance-based methods [8] are popular to solve these 
mapless navigation problems.   

In this paper, we use Deep Reinforcement Learning (DRL) 
to solve the collision avoidance problem and aim to enable the 
mobile robot to avoid the obstacles without prior knowledge of 
the environment. DRL is a combination of Reinforcement 
Learning (RL) and Deep Learning (DL). In general, RL is a 
type of machine learning method that allows an agent to learn 
to act in an environment based on feedback rewards or 
punishments. To solve a simple RL problem, such as the 
FrozenLake environment [9] that contains sixteen possible 
states, the values for all the possible actions in each state are 
listed in a Q-table and can be updated according to the Bellmen 
equation. However, the Q-table is not suitable for the RL 
problems in many complex environments due to the nearly 
infinite number of states and possible actions. In these 
circumstances, neural networks were introduced as the 
nonlinear approximators to estimate the values for all the 
possible actions that extends the RL to DRL. A well-known 
recent application of DRL is AlphaGo Zero [10], a program 
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learned to play the game of Go by itself without any human 
knowledge and successfully won 100-0 against AlphaGo [11], 
which was the first program to defeat a world champion in the 
game of Go. Researchers are also exploring and applying RL in 
robotics [11, 12], and believe that RL has the potential to train a 
robot to discover an optimal behavior surpassing that taught by 
human beings in the future.  

This work attempts to show the feasibility and practicality 
of solving collision avoidance problems with DRL. Our main 
contributions are listed as follows: 1) Successful application of 
DRL to solve the obstacle avoidance problem for mobile 
robots. 2) Development of a simulator in Gazebo as the 3D 
training environment for the obstacle avoidance approach to 
collect large-scale data to train the neural networks. The 
simulator can also be used as the testbed for the robot. 3) 
Implementation and comparison of the performances of the 
collision avoidance algorithms based on different DRL 
methods. 

The rest of this paper is organized as follows: An overview 
of the background and related work is presented in Section 2. 
The implementation of the obstacle avoidance framework and 
simulator setup are described in Section 3. In Section 4, we 
show and discuss the results of the training and testing. Finally, 
concluding remarks are presented in Section 5. 

 
2. BACKGROUND AND RELATED WORK 

RL aims to enable an agent to learn the optimal behavior 
when interacting with the environment by means of trial-and-
error search as well as delayed reward [14]. The main elements 
of an RL problem include an agent, environment states, a 
policy, a reward function, a value function, and an optional 
model of the environment. Typically, the interaction between 
the agent and the environment can be simply described as: at 
each time step t , the agent determines the current environment 
state s  from all possible states S ( s S ), then it chooses an 
action a  out of A ( a A ) according to the current policy

( , )s a . The policy can be considered as a map which shows 

the probabilities of taking each action a  when in each state s . 
After taking the chosen action a , the agent is in a new state s  
and receives a reward signal r . The whole process is depicted 
in Figure 1.  

RL is highly influenced by the theory of Markov Decision 
Processes (MDPs). An RL task can be described as an MDP if it 

has a fully observable environment whose response depends 
only on the state and action at the last time step. A tuple 

, , , ,S A P R   can be utilized to represent an MDP, where S  is 

a state space, A  is an action space, P  is a state transition 
model, R  is a reward function and   is a discount factor. 

Some extensions and generalizations of MDPs are capable of 
describing partially observable RL problems [15] or dealing 
with continuous-time problems [9, 10]. RL algorithms need to 
be capable of updating the policy due to the training experience 
and finally determine the policy that fixes one action for each 
state with the maximum reward. Several solutions to RL 
problems are presented in the following subsections. 

 
2.1 Q-learning 

Q-learning [18] is a basic and popular RL algorithm 
developed by Watkins in 1989. It is capable of finding an 
optimal policy for an MDP by updating the Q-values table 

 ,Q s a  based on Bellman Equation: 

 

    
'

(m, a x  ', '
a

Q s a r Q s a  .                 (1) 

 
Equation (1) can be decomposed into two parts: the 

immediate reward r  and the discounted maximum Q-value of 

the successor state   
'

'max , '(
a

Q s a , where γ is a discount 

factor, [0,1]  , 's is the successor state and 'a is the action to 

be taken to get the maximum Q-value in the state 's .  
 

2.2 Deep Q-networks 
Solving an RL problem using linear methods, such as the 

Bellman equation, can be simple and efficient, but not all 
situations are suitable for updating the action-value iteratively. 
DeepMind proposed a deep learning model known as DQN 
[19], which is a convolutional neural network trained with a 
variant of Q-learning algorithm with experience replay memory 
[20], represented as a data set D . The agent’s experience at 
each time step can be stored in D , and a mini-batch of 
experiences are sampled randomly when performing updates.  

The DQN was tested on several Atari games. In these 
cases, the game agent needs to interact with the Atari emulator 
whose states are represented as 1 1 2 2 1, , , ,..., ,t t ts x a x a a x , 

where tx  is the image describing the current screen at each 

time step t  and ta  is the chosen action. The states are 

preprocessed and converted to an 84 84 4   image as the input 
of the neural network, defined as the Q-network, which has 
three hidden layers and a fully-connected linear output layer. 
The outputs correspond to the predicted Q-values for each valid 
action. A sequence of loss functions ( )i iL   are adopted to train 

the Q-network: 
 

   2

'
( ) ( (max  ', ' , ; ); ( )i i ia ir Q sL Q s aa           (2) 

 
Figure 1. The interaction between the agent and 
the environment  
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where   '
(ma  ',x ';

a ir Q s a    is the target for iteration i , 

and i
  are the weights from the previous iteration which are 

fixed when optimizing the loss function by stochastic gradient 
descent. The gradient can be calculated by differentiating the 
loss function with respect to the weights as follows: 
 

1'
( ) ( (max( ( , ; ))

( , ; )) ( , ; )

  i i ii a

i ii

L Q s a

Q s Q

r

a s a





 

 

  

 


.              (3) 

 
2.3 Double Deep Q-networks 

One critical shortcoming of DQN is that it sometimes 
learns unrealistically high action values, known as 
overestimation. DDQN [21] is introduced to reduce 
overestimation by separating the action selection and action 
evaluation in the target. DDQN was also developed by 
DeepMind in 2015. The way that DDQN updates the target 
networks is the same as DQN but the target of DDQN differs, 
and can be expressed as follows, 

 

'
( ,max( ( ; ; ) ) , )ii ia
s Q sr Q ay       .             (4) 

 

It has two sets of weights, i  and i
 . The action is chosen 

greedily from the network with weights i  at each step, but the 

Q-values assigned to that action is from the target network with 

weights i
 . This method provides a more stable and reliable 

learning process which decreases the overestimation error.  
 
2.4 Double Deep Q-networks Prioritized Experience 
Replay 

Prioritized experience replay of Double Deep Q-networks 
changes the method from randomly sampling experience to 
selecting experience based on the priority of each experience 
stored in the replay memory. The priority value of each 
experience in the replay memory is calculated using temporal-
difference (TD) error [22]:  
 

'
( ,ma x ( ( , ; ); )) ( , )i i ia
s Q s a Q s ar Q                 (5) 

 
where i  is the difference between the target value 

'
( ,max( ( , ; ); ))  i i ia

y s Q sQ ar        and the Q-value 

( , )Q s a . The transitions from the current state to the next state 

with the largest i  are replayed from the memory, which is 

called pure greedy prioritization. In this case, the transitions 
with initially high error are replayed frequently. In order to 
avoid a lack of diversity, stochastic prioritization [22], which 

interpolates between pure greedy prioritization and uniform 
random sampling, is developed to sample the transitions. The 
probability of sampling transition i  can be defined as: 
 

( ) i

kk

p
P i

p






                                 (6) 

 
where ip  is the priority of transition i .  is a value within 

[0,1] , which determines the prioritization percentage used in 

stochastic prioritization. k indicates the size of the minibatch. 
Several approaches are available for evaluating the priority, for 
example, i ip    , where   is a positive constant to make 

sure that ip  is not equal to zero in case of 0i  . This method 

is known as proportional prioritization, which converts the error 
to priority. Another method is known as rank-based 
prioritization. In this case, the priority of transition i  is defined 

as: 
1

( )ip
rank i

 , where  ( )rank i  is the rank of transition i  

based on the value of i . 

     The stochastic prioritization also leads to the bias of the 
estimated solution. To correct the bias, prioritized experience 
replay adds importance-sampling (IS) weights at each 
transition, which is expressed as [22], 
 

 
1 1

( )
( )i N P i

                                  (7) 

 
where N  is the current size of the memory, ( )P i  is the 

possibility of sampling transition i  in equation (6), and   lies 

within the range of [0,1] .  

 
2.5 Related Work 

The work described in [23] applies the DQN to solve the 
obstacle avoidance problem for a mobile robot. It shows that 
the well-trained neural network is able to help a robot avoid 
obstacles in a simulation environment. However, the raw inputs 
from the Kinect sensor mounted on the robot platform need to 
be preprocessed by a supervised learning model to create 
feature maps for the neural network as the inputs, which 
requires more computing power and reduces the algorithmic 
efficiency. In addition, only three possible actions are available 
for the robot to choose according to the outputs of the neural 
network that was trained using the experiences gained from a 
simple corridor-like simulation environments. This limits the 
mobility and performance of the mobile robot and may lead to 
collisions when the robot is navigating in a complex 
environment. 
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Similarly, in [24], the obstacle avoidance method based on 
Asynchronous Deep Deterministic Policy Gradients (ADDPG) 
was successfully developed for mobile robots with a laser 
sensor. Their neural network can take raw sensor data as inputs 
without much preprocessing, but the simulation environments 
are still too simple to provide sufficient experiences for training 
the neural network.  

 
3. COLLISION AVOIDANCE WITH DRL 

This section describes the obstacle avoidance problem and 
its formulation. We introduce the implementation details of 
three different obstacle avoidance strategies based on DQN, 
DDQN, and DDQN-PER. The setup of the simulator is 
presented in this section as well. 

 
3.1 Problem Formulation 

This paper focuses on enabling differential drive robots to 
navigate safely in an environment with narrow paths, corners, 
and other types of obstacles. In general, the problem can be 
formulated as, 

 
  ( , ) ( )t t tv f  O .                              (8) 

 
At each time step t , the planner of the mobile robot needs 

to generate the required linear velocity tv  and angular velocity 

t  from the observation tO  of the environment. In our 

approach, no mathematical model is defined to map the input 
data that contains the environment information to the proper 
commands for the mobile robot. Instead, we consider the 
problem as an MDP and use DRL to solve it. All possible 
observations from the sensor data form the state space S , 
which is the input of the neural network that works as the 
nonlinear function approximator ( , ; )Q s a  . This estimates the 

values of all the possible actions a  in each state s . When the 
robot is in state ts  at the current time step t , it is supposed to 

select the proper action ta  according to the action values 

provided by the neural network ( , ; )tQ s a   and an ε-greedy 

policy. Then the robot will receive a reward tr  after taking that 

action. These transitions  1 1, , ,t t t ts a s r   are recorded and will 

be used to update the parameters of the neural network. A large-
scale interaction dataset is required to train the neural network. 
Thus, we developed a 3D simulator to provide the training and 
testing environment. A virtual Turtlebot with a laser sensor was 
put in that environment as the robot platform. To avoid a lack 
of generalization capability to different scenarios in the real 
world, the training map contains different features for the robot 
to gain as many different transitions as possible. 

 
3.3 Simulator 

A virtual world was built in Gazebo as the simulation 
environment, where a Turtlebot with a 2D laser scanner was 
trained to avoid the collisions. Figure 2 shows the complex 

circuit used with different environmental features such as 
straight tracks, 90-degree turns, and acute- as well as obtuse-
angle corners in order to enrich the experiences of the robot 
during learning, and enable the model to generalize to more 
complicated situations after training. The Turtlebot is a 
differential wheeled mobile robot as shown in Figure 3. The 
blue area indicates the measurements of the 2D laser sensor 
used. No map is provided in advance for the Turtlebot to locate 
any obstacles and plan a collision-free path to travel. It needs to 
learn from scratch about how to behave in such an unknown 
environment.  
 
3.4 Implementation Details 

To implement the obstacle avoidance framework, we 
developed a software architecture in the publish-subscribe 

 

 

 
Figure 3. The virtual robot in the simulation 
environment. 

(a)
(b)

(c)

(d)

 
Figure 2. The training map with different wall 
shapes: (a) obtuse angle turn, (b) right angle turn, 
(c) acute angle turn, (d) and curve turn. 
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pattern utilized the Robot Operating System (ROS). The neural 
network was embedded in a motion planner and implemented 
using Keras with Tensorflow as the backend. The data from the 
sensor were acquired and published in 100 Hz for the motion 
planner to subscribe. Then the commands, such as the linear 
and angular velocities from the motion planner can be sent to a 
low-level controller to control the speed. 

 The OpenAI Gym was used to implement our RL task. 
The gym environment needs to be set up in advance to define 
the components of RL tasks such as states, actions, and 
rewards. The data acquired from the sensor contains the 
distance values measured by 100 laser rays in a 270 degrees 
span. Fifty distance measurements are picked up evenly from 
the raw sensor data and converted into values, with a precision 
of up to two decimal digits in the range of 0.00m to 6.00m, to 
represent the current state ts . Our action set consist of 11 

possible actions and each action has two commands: one is to 
go forward with constant linear velocity at 0.6 m/s, the other is 
an angular velocity 0.8 0.16 ( 0,1,2, 10)m m m       . 

The constant speed ensures the robot could only move forward 
instead of pure rotation. Backward motion is not taken into 
consideration in this work.  

The immediate reward at each time step is assigned based 
upon the following equation, 

 
5 (without collision)

1000 (collision)tr


 
.                 (9) 

The mobile robot receives 5 points for each time step if it 
does not bump into the wall after taking the chosen action, 
otherwise it will receive a punishment of -1000 points.   

After the setup of the gym environment, we implemented 
the neural network using Keras, a Python deep learning library. 
The inputs of the networks are the observations from the laser 
data which represent the states of the environment. Two hidden 
layers, each with 300 neurons are added to the network with 
ReLU as the activation function. The outputs should be the Q-
values of the 11 actions. Different methods were used to update 
the parameters of the neural network and the implementation 
details are presented in Algorithm 1,2, and 3. Algorithm 1 and 2 
use the same sampling method, a minibatch of transitions 
sampled randomly from the memory. The difference between 
these two algorithms is the target iy  to calculate the loss ( )L  . 

As mentioned in Section 2.3, DDQN needs two sets of 
parameters to determine the Q-values of the actions to avoid 
overestimation. In Algorithm 3, a rank-based prioritization is 
utilized to sample the transitions to improve the efficiency of 
the learning process. 

Each algorithm was ran for 3000 epochs with each 
containing at most 4000 time steps. Once the time step reaches 
the maximum value or the Turtlebot crashes into the wall, the 
simulation resets with the Turtlebot at a random initial position 
and a new epoch starts. 

Algorithm  1: DQN 

1. Initialize the Gazebo simulator; 

    Initialize the memory D and the Q-network with random weight  ;  

2: for episode =1, k do 

3:   Put the visual robot at a random position in the 3D world;            

      Get the first state 1s   
4:    for t = 1,T do 

5:       With probability ε select a random action ta  

6:       Otherwise select   ,x ;ma
at iQ s aa    

7:       Take action ta ; get reward 1tr  and state 1ts    

8:       Store transition  1 1, , ,t t t ts a s r  in D  

9:       Sample random mini-batch of transitions  1 1, , ,i i i is a s r 
10:      if 1ir   = -1000 then 

11:        1i iy r    
12:      else 

13:        1 1max ( ; ) ( ,i
a

i i Q s ay r     
14:      end if 

15:      Calculate   by perform mini-batch gradient descent on the   

            Mini-batch of loss 2( , ; ))( ) ( QL yi s a    

16:    end for 

17: end for

Algorithm  2: DDQN 

1. Initialize the Gazebo simulator; 

    Initialize the memory D and the Q-network with random weight  ;  

    Initialize the target Q-network with random weights    
2: for episode =1, k do 

3:   Put the visual robot at a random position in the 3D world;            

      Get the first state 1s   
4:    for t = 1,T do 

5:       With probability ε select a random action ta  

6:       Otherwise select   ,x ;ma
at iQ s aa    

7:       Take action ta ; get reward 1tr  and state 1ts    

8:       Store transition  1 1, , ,t t t ts a s r  in D  

9:       Sample random mini-batch of transitions  1 1, , ,i i i is a s r 
10:      if 1ir   = -1000 then 

11:        1i iy r    
12:      else 

13:        1 11 ( ,max( ( , ; ); ))i iii s Q s ay r Q    
   

14:      end if 

15:      Calculate   by perform mini-batch gradient descent on the   

            Mini-batch of loss 2( , ; ))( ) ( QL yi s a    

16:      Replace the target network parameters    every N step 
17:    end for 

18: end for
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3.4 Validation in Simulator 

Two tests were set up to evaluate the performances of the 
virtual robot with the well-trained neural networks. Test 1 was 
set up as follows: 

1. Run the program for three times with different training 
methods: DQN, DDQN, DDQN-PER respectively and obtain 
three different trained neural networks.  

2. Apply the three neural networks to the Turtlebot 
successively and let the robot navigate in the training map for 
five minutes with each of the networks. The metric for 
evaluation of the performances of the neural networks is chosen 
as the number of collisions undergone within the five minutes 
of simulation. 

To prove that the proposed approach can help the robot 
navigate an unknown environment, we introduced Test 2: 

1. Place the virtual robot with each neural network in two 
test maps different from the training map. The detailed 
information about the maps is shown in Figure 4.  

2. Test the robot with each neural network for five minutes 
with the different test maps and record the number of collisions. 
The virtual robot will be put in a random location with different 
orientations on the map. After the robot travels for 1000 time 
steps without collisions, the robot will be spawned to another 
random location. This is to demonstrate that the proposed 
obstacle avoidance approach is robust and capable of 
navigating an unknown environment regardless of the starting 

position and the heading. Once the robot is too close to the 
wall, the algorithm will stop the virtual Turtlebot and reset it at 
another random location. 

  
4. RESULTS 

 
4.1 Training Results 

At the beginning of the training, the Turtlebot has no 
previous knowledge about the environment and insufficient 
experiences are available for it to learn from, and as a result, it 
keeps rushing to the walls. After training, the Turtlebot is able 
to avoid the collisions and accidents rarely happened as before, 
which shows that the Turtlebot managed to learn how to avoid 
obstacles gradually. Figure 5 shows an example in which the 
well-trained policy guided the Turtlebot to navigate in the 
training map successfully without any collision. At each time 
step, the observation from the sensor data was fed into the well-
trained neural network. The robot then took the proper action 
according to the output of the neural network.  This proved that 
DRL has the ability to solve the obstacle avoidance problem. 

 
 

 
 
Figure 4. Diagrams of (a) test map 1, and (b) test 
map 2. 

Algorithm  3: DDQN with prioritized replay 

1. Initialize the Gazebo simulator; 

    Initialize the memory D and the Q-network with random weight  ;  

    Initialize the target Q-network with random weights    
2: for episode =1, k do 

3:   Put the visual robot at a random position in the 3D world;            

      Get the first state 1s   
4:    for t = 1,T do 

5:       With probability ε select a random action ta  

6:       Otherwise select   ,x ;ma
at iQ s aa    

7:       Take action ta ; get reward 1tr  and state 1ts    

8:       Store transition  1 1, , ,t t t ts a s r  in D  

9:        Sample mini-batch of transitions  1 1, , ,i i i is a s r  using rank-

based    prioritization 

10:      if 1ir   = -1000 then 

11:        1i iy r    
12:      else 

13:        1 11 ( ,max( ( , ; ) ; ))i iii s Q s ay r Q    
   

14:      end if 

15:      Calculate   by perform mini-batch gradient descent on the   

            Mini-batch of loss 2( , ; ))( ) (i iQL y ai s    

16:      Replace the target network parameters    every N step 
17:    end for 

18: end for 
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To evaluate the three algorithms, we recorded the average 
Q-values and accumulated rewards from the training. A moving 
average filter with a window size of 500 is utilized to process 
the data in order to identify the trends clearly in the data. The 
plots in Figure 6 show that the learning curves tend to converge 
in all three algorithms, which means that these algorithms can 
achieve the goal of determining an optimal policy. We first 
compared the average Q-values and cumulated rewards from 
Algorithm 1 and 2 as shown in the first two rows of Figure 4. 
The average Q-values estimated by DQN were higher but the 
rewards dropped due to the overestimation. In addition, the 
learning curve of DDQN is smoother than that of DQN, which 
means that learning with DDQN is more stable. The last plot in 

Fig. 6 shows a comparison between DDQN-PER and DDQN. It 
is evident that the reward curve of DDQN-PER converge faster 
than DDQN. This proved that training a neural network with 
prioritized replay in our obstacle avoidance problem can be 
more efficient.  

In other words, Turtlebot is able to learn to improve its 
behavior by interacting with the environment using DRL, 
which indicates that unsupervised training of a model has the 
potential to solve the obstacle avoidance problems in a 
complicated environment.  
 

4.2 Validation of Results 
Figure 7 shows an instance of the navigation in the test 

environment using the well-trained policy and the Turtlebot 
could succeed in navigating around the obstacles. However, the 
Turtlebot could be trapped into rotating around in the large 
open area instead of exploring the whole environment. This is 
because we investigated the possibility and performance of 
DRL based on pure obstacle avoidance method and no target 
position is considered in this work.  Table 1 shows the 
performance results from Test 1, where the robot ran with 
different neural networks over a duration of five minutes. The 
results demonstrate that the neural networks trained with 
DDQN and DDQN-PER provide better performance as they 
lead the robot to less collisions.  

 
The results from Test 2 are shown in Table 2. The robot 

performance is recorded as unsatisfactory in Test Map 1 
although the map is significantly simpler in comparison to Test 
Map 2. This is because the robot lacks experience in large open 
areas. This underlines the significance of the experiences a 
robot acquires during training and demonstrates how critical 
they are for the superior performance of the robot in an 

   
 

Figure 6. Average q-values estimated by DQN, 
DDQN and the comparison of rewards. 
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TABLE 1 

TEST 1: RESULTS 

Algorithms NUMBER OF COLLISIONS IN 5 MIN 

DQN 3 
DDQN 1 

DDQN-PER 1 

Figure 5. Navigation performance of the well-
trained policy in the training map. The blue area 
indicates the laser rays. 

Figure 7. Navigation performance of the well-trained 
policy in the testing map. The blue area shows the 
measurements of the laser sensor. 
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unknown environment. As with all DRL approaches, the 
proposed obstacle avoidance framework faces the limitation of 
real-world transference. The robot may fail to navigate on a 
simple map in the real world, if the features in that map are 
entirely different from that used in the training environment. It 
is expected that this problem can be solved and compensated 
for by training the robot in more environments on top of the 
experiences it has already learned. We will discuss the 
feasibility of this approach in our future work. 

 
5. CONCLUSION 

In this work, a virtual Turtlebot is trained to avoid 
obstacles in a Gazebo simulator with different optimal training 
methods. Three different obstacle avoidance algorithms based 
on DRL are implemented and evaluated in this paper. Through 
simulations, we demonstrated that the robot has the ability to 
avoid collisions after training for 3000 epochs with all three 
algorithms. We plan to verify the feasibility and reliability of 
the policies through experimentation with a physical robot in 
the future. Furthermore, while only one robot is considered in 
this paper and no specific goal position is set for the robot for 
navigation, we are currently exploring goal-oriented navigation 
and multi-robot cooperation in our future work.  
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