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Abstract— This paper presents an instrumentation system 

developed for off-ship measurement of ship air wakes using an 
instrumented radio controlled (RC) helicopter. We propose the 
use of an IMU as a sensor to measure air wake in the form of 
induced vibrations on the helicopter while it maneuvers 
through regions of active air wake. The proposed system 
makes use of Back Propagation neural networks to compensate 
for the vibrational noise contributed by pilot inputs. The 
instrumentation system was tested on a modified training 
vessel in the Chesapeake Bay, which provided a wide range of 
wind conditions. 

Keywords—Ship Air Wake, Artificial Neural Networks, 
RC Helicopter, Computational Fluid Dynamics 

I. INTRODUCTION  
Launch and recovery of rotary wing aircraft from naval 

vessels can be very challenging and potentially hazardous. 
Ship motion combined with the turbulence that is created as 
the wind flows over the ship’s superstructure can result in 
rapidly changing flow conditions for rotary wing aircraft. 
Additionally, dynamic interface effects between the vessel 
air wake and the rotor wake are also problematic. 

 To ensure aircraft and vessel safety, launch and recovery 
envelopes are prescribed for specific aircraft types on 
different ship classes [1]. Permissible launch and recovery 
envelopes are often restrictive because of limited flight 
envelope expansion. Such flight envelopes are generally 
determined through flight testing which is frequently difficult 
to schedule, expensive, potentially hazardous and above all, 
highly subjective. Currently, the launch and recovery wind 
limits and air operation envelopes are primarily determined 
via the subjective analysis of test pilots. The simplest 
solution to such issues is complementary use of 
computational tools [2-8] to predict test conditions and 
extrapolate test results, thereby reducing the number of 
actual flight test points required. However, current 
computational methods are insufficiently validated for ships 
with a complex superstructure, such as a destroyer or cruiser. 
Validated computational air wake predictions can also be 
used for ship design and operational safety analysis. 
Therefore there is a need for non-subjective systems for 
experimental validations of CFD models for air wake 
patterns. 

 

Most CFD validation methods available in the literature 
[9-13] are based on anemometer sensors, which are not 
suitable for off-ship air wake analysis. The most obvious 
reason is that, in tethered condition, it is not possible to 
measure air velocities from far distances, and in untethered 
condition (on some aircraft), high noise level limits accuracy 
in measurements.  

II. PROPOSED SYSTEM 
The proposed system makes use of a small remotely 

piloted helicopter (Fig. 1(b)) with rotor diameter of 1.3 m 
(4.5 ft) to measure air wake turbulence aft of the Naval 
Academy’s YP676 flight deck (Fig 1(a)). The helicopter was 
equipped with a GPS and an IMU (Fig. 1(c)) for recording 
the position and vibrations of the helicopter as a function of 
time. The YP676 vessel was equipped with a reference 
anemometer and GPS for recording relative wind and the 
position of the boat. The helicopter was maneuvered through 
regions in the ship’s air wake where steep velocity gradients 
exist.  The lightweight (RC) helicopter was affected by the 
air wake turbulence where the velocity gradients appeared as 
noticeable vibrational patterns in the IMU’s data [14]. 
Concurrently, the relative position of the helicopter was 
determined by comparing the GPS derived position of the 
helicopter with that of a reference position on the ship. 
Combining these two measurement systems, the locations of 
sharp gradients in the air wake can be mapped relative to the 
ship (accurate within one rotor diameter of the helicopter). 
Since the center of mass and the geometric center of the 
helicopter do not coincide, any wind gust during flight tends 
to rotationally oscillate the helicopter, which can be 
measured with a Gyroscope. As such, angular velocity 
measurements would provide better information about air 
wake compared to acceleration measurements. Therefore, an 
IMU with a gyroscope is an excellent sensor for measuring 
air wake intensity. 

During underway flight operations, the YP’s craft master 
attempted to keep the ship under the same relative wind over 
deck based upon the reference anemometer.  This technique 
has one drawback where the IMU not only reads vibrations 
due to air wake, but also vibrations caused by the 
helicopter’s own maneuvers which depends on pilot inputs. 
Therefore, to solely measure the air wake induced vibrational 
intensity, it is important to remove the contribution of pilot 
induced dynamic inputs from the IMU readings. Since the 
angular velocity is a vector quantity, the measurement from This research is funded by Office of Naval Research. Program Officer is Mr. 

John Kinzer (Code 351).  
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Fig: 2: System Architecture 

Fig. 3: Pilot Input Receiver Module 

the IMU is basically a vector sum of the external 
disturbances and internal dynamics. If the IMU readings 
caused by pilot inputs alone can be estimated, the external 
disturbances (air wake) can be measured by subtracting the 
estimated readings from the actual readings. The proposed 
method uses a Back Propagation Neural Networks (BPNN) 
to predict the component of IMU readings arising from pilot 
inputs alone.   

A Neural Network was trained to predict the IMU 
vibrational components due to pilot input. This predicted 
IMU data was subtracted from the actual measured data to 
obtain the actual disturbance due to air wake.  For collection 
of training data, the helicopter was flown in a large enclosed 
room (USNA Rotor Lab), which was free of external 
disturbance (air wake and naturally imposed wind.) IMU 
data and pilot inputs were recorded during these flights. Fig 2 
shows overall architecture of the proposed system for air 
wake measurement. 

 

III. PILOT INPUT COMPENSATION 
 The RC helicopter used for the experiments requires 

five dimensional pilot inputs. Three of which control swash 
plate dynamics and the remaining two control the tail rotor 
and throttle.  Therefore, there are five Pulse Width 
Modulation (PWM) signals generated by the radio-

controller as pilot inputs. Since the control signals from the 
radio transmitter (Remote Controller) are sent as ‘one-to-all’ 
broadcasting mode, multiple RF receivers can communicate 
with a single transmitter. Therefore, an additional RC 
receiver was used to read the control signals sent by the 
transmitter. A USB powered custom PCB (Fig. 3) was 
designed and integrated in order to read the required five 
PWM control channels at a refresh rate of 30 Hz. 

IV. MODELING IMU RESPONSE TO PILOT INPUTS USING 
NEURAL NETWORKS 

Artificial neural network (ANN) [15-18] is usually 
defined as a network composed of a large number of 
processing units (neurons) that are massively inter 
connected, operate in parallel and learn from experience 
(training samples). ANNs are widely used as a pattern 
recognition tool especially for nonlinear regression problems. 

Back-Propagation Neural Network (BPNN) is a multilayer 
feed-forward network based on error back propagation 
algorithm [17-19].  

 

A. Application of BPNN in Predicting Air wake 
The proposed system approximates the pilot input data 

points (within a fixed time window) to a line and then uses 
the line parameters to describe the pilot input history. For 
each pilot input channel (total five), a history window of 15 
samples (equivalent to 0.5 s of data) was modeled with a line 

 
 

 
 

 
Fig. 1: Experimental Setup: (a) YP676 training vessel (Top),( b) 
Instrumeted RC Helicoper on Deck (Middle), (c) IMU and GPS sensor 
(Bottom) 
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Fig. 5:  Histogram for prediction error of the neural network 
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equation  . Here y is the concerned pilot input 
channel sample, m is the slope, x is the sample index 
(equivalent to time) and c is the offset in this linear model.  If 
N is the number of samples in the history window (N=15 in 
our case) then the parameters m and c are calculated using 
the least square method as follows: 

 

                       

         

 

 
Since the pilot data is not a perfect fit to the linear model it 
is required to consider curve-fitting error while linearizing 
the pilot data. The proposed system uses sum of the absolute 
errors (e) as the third parameter for modeling pilot input 
data, which is calculated as follows: 
 

 

 
Three parameters {m, c, e} were obtained from each pilot 
input data channel. Five data channels resulted in 15 
parameters to represent pilot input data signals. 

In the proposed method, four channels of gyroscope data 
were used by BPNN. First three channels were Cartesian 
components of low pass filtered gyroscope data. The fourth 
predicted channel was the local standard deviation of the 
magnitude (in spherical coordinate system) of the Gyroscope 
data in a fixed sized window. Therefore, the Neural Network 
took a 15-dimensional input vector (i.e. pilot data) to predict 
a 4-dimensional output vector (i.e. gyroscope data). 

The input and output layer had fixed number of nodes, 
i.e. 15 and 4 respectively because these are determined by 
the dimensionality of the input and the output data. The 

network topology for the hidden layers was selected using 
‘trial and error’ method. It was found that the topology with 
12 and 8 nodes respectively in the two hidden layers give 
the best prediction accuracy. Fig. 4 shows the final neural 
network topology used in the proposed method. A 10-fold 
cross validation [20] was implemented to prevent 
overtraining of the network. 

 

B. Network Performance 

Training the network consisted of collecting flight data 
from experiments conducted in a Rotor testing Lab in the US 
Naval Academy. The Rotor Lab provided an air wake 
/natural wind free zone for data collection. Data was 
collected from five flight conducted on three different 
helicopters (two Pro and one ESP TREX 600 models). Out 
of the three total flights conducted with the ESP model, two 
were used for training the neural network, which provided 
approximately a total of 37,000 data samples. One fourth of 
the total data was used for actually training the network. The 
accuracy of the network was assessed by testing it on a 
complete data set. The histogram chart in Fig. 5 plots the 
error in predicting IMU gyroscope data which indicates that 
the most probable error is ±2 /sec. which is believed to be a 
good result given the noise produced by a flying helicopter. 
Fig. 6 shows prediction results of the neural network along 
with actual measurements. Ideally, there should be a perfect 
overlap between the actual measurement (in blue) and the 
predicted data (in red). In this case the predicted X and Y 
components of the gyroscope do not overlap very well with 
the actual measurements. This is because of the limited 
ability to vary the X and Y components of the gyroscope data 
as compared to the Z component due to limited space in the 
Rotor Lab and the need to ensure helicopter safety. 
Therefore, the neural network preformed much better in 
predicting the Z component and the standard deviation of the 
gyroscope. The overall overlap between the predicted data 
and actual measurement proves the capabilities of this 
system to predict the gyroscope data from the pilot inputs 
with fairly good accuracy.  

 
Fig. 4: Neural Network Topology used for predicting IMU output 

120



 
Fig. 6:  Predicted gyroscope data overlaid on actual measurements 
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V. AIR WAKE MEASUREMENT 

High rotor speeds introduce noise in IMU readings in the 
form in internal oscillations. Since the frequency of such 
oscillations is much higher than that caused by air wake, 
effect of the helicopter’s own vibrations in the gyroscope 
output can be nullified by applying a Gaussian low pass 
filter. If  is the raw gyroscope data then the filtered signal 
( ) is obtained as follows: 

 

where * is the mathematical convolution operation and 
 is the Gaussian low pass filter kernel with width  

and length L. The larger the values of  and L are,-then the 
lower the cut-off frequency of the filter. It is required to 
retain the motion of the helicopter due to air wake (whose 
time constant is in the order of 1 sec) and filter the high 
frequency noise.  Therefore, L was selected to be 1 sec. 
Through empirical optimization, it was found that  of 0.6 
sec worked well over the wide range of data acquired. 
    Since the aim of this project is to determine launch and 
recovery envelopes for naval vessels, the direction of the air 
wake is less important than the magnitude of the vibrations 
which determine the intensity of the air wake. Therefore, it 
is advantageous to use radial component of the Gyroscope 
data rather than the three Cartesian components since it 
decreases the computation burden. In the proposed system,  

 
the gyroscope data was converted to a spherical coordinate 
system and the absolute magnitude (radial component) was 
used to represent the air wake pattern. If  is the 
filtered angular velocity ( ) of the helicopter in Cartesian 
coordinate system measured from the gyroscope 
and  is the angular velocity determined from 
the Neural Network, then the radial component of the net 
angular velocity ( ) due to air wake is obtained as: 

 

 
Air wake causes the helicopter to oscillate vigorously 

(with large amplitude), which appears as oscillations in the 
IMU (predominantly in the Gyroscope) data. Therefore 
whenever the helicopter enters into an air wake zone, an 
increase in gyroscope fluctuation readings is expected. This 
fluctuation will appear as a peak in the gyroscope absolute 
magnitude (radial) component as well as a peak in the local 
standard deviation of the gyroscope radial component. The 
resultant waveform is an (absolute) angular velocity of the 
helicopter caused by the air wake alone.  

During air wake peak, the helicopter is faced with strong 
air wake gusts therefore one should observe sudden changes 
in angular/linear velocities under the effect of large 
accelerations. To measure the extent of changes in angular 
velocities, local standard deviation for the gyroscope data 
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(radial component) was calculated by applying standard 
deviation filter with a window size of 1 sec. The ith sample 
of local standard deviation ( ) of the radial component of 
the raw gyroscope data ( ) is calculated as follows:  

 

where  and N is total number of samples in .  

Since a simultaneous rise is expected in the filtered 
gyroscope data and its standard deviation data, the two 
waveforms were multiplied (point-to-point multiplication) 
to analyze air wake conditions. Furthermore, the standard 
deviation ( ) also contains the component arising from 
pilot inputs; therefore, there is a need to compensate for 
pilot inputs in the standard deviation data while predicting 
air wake. For convenience, the generated waveform is 
referred to as the ‘Air wake Data’ ( ):  

 

where  is the standard deviation of the gyro data 
predicted from the Neural Network. Fig. 7 shows estimation 
of the ship air wake data from pilot input compensated 
gyroscope data for one of the test flights. The upper subplot 
of this figure, the blue plot shows the local standard 
deviation of the gyro data after compensation given by 
equation (6) and the red plot shows the magnitude of gyro 
data after compensation given by equation (5). Their 
product referred to as ‘Air wake data’ given by equation (7) 
is shown in the lower subplot with local peaks marked in 

blue. Fig. 7 shows the Air Wake magnitude for the whole 
flight as a function of time.   

Since the ship air wake magnitude is also a function of 
the position relative to the superstructure of the vessel, the 
air wake data should be associated with helicopter relative 
position in reference to the training vessel. The relative 
position of instrumented helicopter was estimated by 
subtracting the ship’s geographic coordinates from 
helicopter’s geographic coordinates. The relative trajectory 
of the helicopter was then rotated by the heading angle of 
the boat to project the trajectory in boat’s frame of 
reference. 

VI. RESULTS AND CONCLUSION 
In order to test the capabilities of the proposed system, a 

number of test flights have been conducted in Chesapeake 
Bay to measure the air wake produced by YP 676 boat for 
relative wind angles of 0° and 15° (as measured from the 
bow the ship in the clockwise direction).  For each test 
flight, the Air Wake data was generated and overlaid on the 
helicopter trajectory in the form of a color plot. 

Figs. 8 and 9 show air wake distribution estimated from 
the proposed system for relative wind from 0° and 15° 
respectively. In these distribution plots, the color on the 
helicopter trajectory represents the air wake magnitude in 
the form of vibrations sustained by the helicopter. In Fig. 8, 
the high aiwake zone is concentrated along the center line. 
This is in accordance with the wind conditions and related 
numerical simulations [13,14]. Similarly, in Fig 9, the high 
air wake zone is tilted to the right, which again corresponds 
to numerical simulations [13,14].  

Currently, the proposed system is effective for 
determining air wake distribution pattern which is basically 
a distribution of magnitude. This system can be extended to 

 
Fig. 7: Air wake data after pilot input compensation for one of the test flights. 
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estimate air wake direction through the use of accelerometer 
data and could also be potentially used for navigating an 
autonomous UAV. The proposed system has the potential to 
evolve into a wireless air flow sensor without actually 
measuring airflow.  The authors plan to further extend this 
work to transmit the data wirelessly in realtime. Prediction 
results can be further improved by trying other existing 
machine learning algorithms. 
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Fig. 9: Ship air wake distribution for one of the test flights with wind 
direction of 15°. 
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Fig. 8: Ship air wake distribution for one of the test flights with wind 
direction of 0°. 
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